
Adept ARCL Reference Guide
This is a PDF/print version of the Adept ARCL Reference Guide. A Table of Contents is
provided so that you can locate the desired topics. Because the Adept ARCL Reference Guide
was designed for online viewing, there may be slight formatting anomalies in the PDF/print
version. Additionally, links to external documents will not work in the PDF file.

NOTE: Please see the ReadMe file, which is includedwith your Adept Motivity software, for a description
of any recent changes.

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 1

Copyright Notice

The information contained herein is the property of Adept Technology, Inc., and shall not be reproduced in
whole or in part without prior written approval of Adept Technology, Inc. The information herein is subject
to change without notice and should not be construed as a commitment by Adept Technology, Inc. The doc-
umentation is periodically reviewed and revised.

Adept Technology, Inc., assumes no responsibility for any errors or omissions in the documentation. Critical
evaluation of the documentation by the user is welcomed. Your comments assist us in preparation of
future documentation. Please submit your comments to: techpubs@adept.com.

Copyright  2006-2016 by Adept Technology, Inc. All rights reserved.

Adept, the Adept logo, the Adept Technology logo, AdeptVision, AIM, Blox, Bloxview, FireBlox, Fireview,
Meta Controls, MetaControls, Metawire, Motivity, Soft Machines, and Visual Machines are registered trade-

marks of Adept Technology, Inc.

Brain on Board is a registered trademark of Adept Technology, Inc. in Germany.

Adept Lynx, Adept Enterprise Manager 1100, ARAM, ARCL, MobileEyes, MobilePlanner, and SetNetGo are
trademarks of Adept Technology, Inc.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Created in the United States of America

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 2

mailto:techpubs@adept.com

Table Of Contents

Introduction to ARCL 25
Version Requirements 26
How Do I Begin 27
Related Manuals 28
How Can I Get Help? 29

Set ARCL Parameters in MobilePlanner 30
Accessing the Configuration Options 31
Understanding the Configuration Parameters 37
Outgoing ARCL Connection Setup Parameters 38
Outgoing ARCL Commands Parameters 39
Outgoing Enterprise ARCL Connection Setup Parameters 40
Outgoing Enterprise ARCL Commands Parameters 41
See Also... 41

Connect to ARCL Using a Telnet Client 42
Setting the Connection Parameters 43
Connecting to ARCL 44
See Also... 45

Using the ARCL Commands 46
See Also... 46

Understanding the Commands 47
Document Conventions 47
CommandNotes 48
Data Types 48
Status and Error Messages 50
Status Conditions 51

Using ARCL Variables 55
Using Tasks and Macros 56
Forever Tasks 57

Using Configuration Commands 58
Using the Queuing Commands 60
Working With Payloads 61
Creating a Map 63
Tracking Sectors 64

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 3

Navigating and Localizing 65
Using Range Devices and Custom Sensors 66
Monitoring the I/O Ports 68

ARCL Command Reference 70
See Also... 73

analogInputList Command 74
Syntax 74
Usage Considerations 74
Parameters 74
Responses 74
Details 74
Examples 74
Related Commands 74

analogInputQueryRaw Command 75
Syntax 75
Usage Considerations 75
Parameters 75
Responses 75
Details 75
Related Commands 75

analogInputQueryVoltage Command 76
Syntax 76
Usage Considerations 76
Parameters 76
Responses 76
Details 76
Related Commands 76

applicationFaultClear Command 77
Syntax 77
Usage Considerations 77
Parameters 77
Responses 77
Details 77
Examples 77
Related Commands 78

applicationFaultQuery Command 79
Syntax 79
Usage Considerations 79
Parameters 79
Responses 79
Details 79
Examples 79
Related Commands 79

applicationFaultSet Command 81

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 4

Syntax 81
Usage Considerations 81
Parameters 81
Responses 81
Details 81
Examples 81
Related Commands 82

arclSendText Command 83
Syntax 83
Usage Considerations 83
ARAM Settings 83
Parameters 83
Responses 83
Details 83
Example 83

clearAllObstacles Command 84
Syntax 84
Usage Considerations 84
Parameters 84
Responses 84
Details 84
Examples 84

configAdd Command 85
Syntax 85
Usage Considerations 85
ARAM Settings 85
Parameters 85
Responses 85
Details 85
Examples 85
Related Commands 86

configParse Command 87
Syntax 87
Usage Considerations 87
ARAM Settings 87
Parameters 87
Responses 87
Details 87
Examples 87
Related Commands 87

configStart Command 89
Syntax 89
Usage Considerations 89
ARAM Settings 89
Parameters 89
Responses 89
Details 89

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 5

Examples 89
Related Commands 90

connectOutgoing Command 91
Syntax 91
Usage Considerations 91
Parameters 91
Responses 91
Details 91
Examples 91

createInfo Command 92
Syntax 92
Usage Considerations 92
Parameters 92
Responses 92
Details 92
Examples 92
Related Commands 93

customReadingAddAbsolute Command 94
Syntax 94
Usage Considerations 94
ARAM Settings 94
Parameters 94
Responses 94
Details 94
Examples 95
Related Commands 95

customReadingAdd Command 96
Syntax 96
Usage Considerations 96
ARAM Settings 96
Parameters 96
Responses 96
Details 96
Examples 97
Related Commands 97

customReadingsClear Command 98
Syntax 98
Usage Considerations 98
ARAM Settings 98
Parameters 98
Responses 98
Details 98
Examples 98
Related Commands 99

distanceBetween Command 100
Syntax 100
Usage Considerations 100

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 6

Parameters 100
Responses 100
Details 100
Examples 100
Related Commandss 101

distanceFromHere Command 102
Syntax 102
Usage Considerations 102
Parameters 102
Responses 102
Details 102
Examples 102
Related Commands 103

dock Command 104
Syntax 104
Usage Considerations 104
Parameters 104
Responses 104
Details 104
Examples 104
Related Commands 104

doTask Command 105
Syntax 105
Usage Considerations 105
Parameters 105
Responses 105
Details 105
Examples 105
Related Commands 106

doTaskInstant Command 107
Syntax 107
Usage Considerations 107
Parameters 107
Responses 107
Details 107
Related Commands 107

echo Command 109
Syntax 109
Usage Considerations 109
Parameters 109
Responses 109
Examples 109

enableMotors Command 110
Syntax 110
Usage Considerations 110
Parameters 110
Responses 110

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 7

Examples 110
Related Commands 110

etaRequest Command 111
Syntax 111
Usage Considerations 111
Parameters 111
Responses 111
Details 111
Examples 111
Related Commands 111

executeMacro Command 112
Syntax 112
Usage Considerations 112
Parameters 112
Responses 112
Details 112
Example 112
Related Commands 113

faultsGet Command 114
Syntax 114
Usage Considerations 114
Parameters 114
Responses 114
Details 114
Examples 114
Related Commands 115

follow Command 116
Syntax 116
Usage Considerations 116
Parameters 116
Responses 116
Details 116
Examples 116
Related Commands 116

getConfigSectionInfo Command 117
Syntax 117
Usage Considerations 117
ARAM Settings 117
Parameters 117
Responses 117
Details 117
Examples 118
Related Commands 118

getConfigSectionList Command 119
Syntax 119
Usage Considerations 119
ARAM Settings 119

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 8

Parameters 119
Value 119
Details 119
Examples 119
Related Commands 120

getConfigSectionValues Command 121
Syntax 121
Usage Considerations 121
ARAM Settings 121
Parameters 121
Responses 121
Details 121
Examples 121
Related Commands 122

getDateTime Command 123
Syntax 123
Usage Considerations 123
Parameters 123
Examples 123

getGoals Command 124
Syntax 124
Usage Considerations 124
Parameters 124
Responses 124
Examples 124
Related Commands 124

getInfo Command 126
Syntax 126
Usage Considerations 126
Parameters 126
Responses 126
Details 126
Examples 126
Related Commands 126

getInfoList Command 128
Syntax 128
Usage Considerations 128
Parameters 128
Responses 128
Details 128
Examples 128
Related Commands 129

getMacros Command 130
Syntax 130
Usage Considerations 130
Parameters 130
Responses 130

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 9

Details 130
Examples 130
Related Commands 130

getPayload Command 132
Syntax 132
Usage Considerations 132
Parameters 132
Responses 132
Details 132
Examples 132
Related Commands 132

getPrecedence Command 133
Syntax 133
Usage Considerations 133
Parameters 133
Responses 133
Details 133
Examples 133
Related Commands 133

getRoutes Command 134
Syntax 134
Usage Considerations 134
Parameters 134
Responses 134
Examples 134
Related Commands 134

goto Command 135
Syntax 135
Usage Considerations 135
Parameters 135
Responses 135
Details 135
Examples 135
Related Commands 136

gotoPoint Command 137
Syntax 137
Usage Considerations 137
Parameters 137
Responses 137
Details 137
Examples 137
Related Commands 138

gotoRouteGoal Command 139
Syntax 139
Usage Considerations 139
Parameters 139
Responses 139

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 10

Details 139
Examples 139
Related Commands 140

help Command 141
Syntax 141
Usage Considerations 141
Parameters 141
Details 141
Examples 141

inputList Command 142
Syntax 142
Usage Considerations 142
Parameters 142
Responses 142
Details 142
Examples 142
Related Commands 142

inputQuery Command 144
Syntax 144
Usage Considerations 144
Parameters 144
Responses 144
Details 144
Examples 144
Related Commands 144

listAdd Command 145
Syntax 145
Usage Considerations 145
Parameters 145
Responses 145
Details 145
Examples 145
Related Commands 146

listExecute Command 147
Syntax 147
Usage Considerations 147
Parameters 147
Responses 147
Details 147
Examples 147
Related Commands 148

listStart Command 149
Syntax 149
Usage Considerations 149
Parameters 149
Responses 149
Details 149

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 11

Examples 149
Related Commands 150

localizeToPoint Command 151
Syntax 151
Usage Considerations 151
Parameters 151
Responses 151
Details 151
Examples 151
Related Commands 152

log Command 153
Syntax 153
Usage Considerations 153
Parameters 153
Responses 153
Details 153
Examples 153
Related Commands 154

mapObjectInfo Command 155
Syntax 155
Usage Considerations 155
Parameters 155
Responses 155
Details 155
Examples 156
Related Commands 156

mapObjectList Command 157
Syntax 157
Usage Considerations 157
Parameters 157
Responses 157
Details 157
Examples 158
Related Commands 158

mapObjectTypeInfo Command 159
Syntax 159
Usage Considerations 159
Parameters 159
Responses 159
Details 159
Examples 160
Related Commands 160

mapObjectTypeList Command 161
Syntax 161
Usage Considerations 161
Parameters 161
Responses 161

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 12

Details 161
Examples 162
Related Commands 162

newConfigParam Command 163
Syntax 163
Usage Considerations 163
ARAM Settings 163
Parameters 163
Responses 164
Details 164
Examples 164
Related Commands 164

newConfigSectionComment Command 165
Syntax 165
Usage Considerations 165
ARAM Settings 165
Parameters 165
Responses 165
Details 165
Examples 165
Related Commands 166

odometer Command 167
Syntax 167
Usage Considerations 167
Parameters 167
Responses 167
Details 167
Examples 167
Related Commands 167

odometerReset Command 168
Syntax 168
Usage Considerations 168
Parameters 168
Responses 168
Details 168
Examples 168
Related Commands 168

oneLineStatus Command 169
Syntax 169
Usage Considerations 169
Parameters 169
Responses 169
Details 169
Examples 169
Related Commands 169

outputList Command 171
Syntax 171

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 13

Usage Considerations 171
Parameters 171
Responses 171
Details 171
Examples 171
Related Commands 171

outputOff Command 173
Syntax 173
Usage Considerations 173
Parameters 173
Responses 173
Details 173
Examples 173
Related Commands 173

outputOn Command 174
Syntax 174
Usage Considerations 174
Parameters 174
Responses 174
Details 174
Examples 174
Related Commands 174

outputQuery Command 175
Syntax 175
Usage Considerations 175
Parameters 175
Responses 175
Details 175
Examples 175
Related Commands 175

patrol Command 177
Syntax 177
Usage Considerations 177
Parameters 177
Responses 177
Details 177
Examples 177
Related Commands 177

patrolOnce Command 179
Syntax 179
Usage Considerations 179
Parameters 179
Responses 179
Details 179
Examples 179
Related Commands 179

patrolResume Command 181

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 14

Syntax 181
Usage Considerations 181
Parameters 181
Responses 181
Details 181
Examples 181
Related Commands 182

pauseTaskCancel Command 183
Syntax 183
Usage Considerations 183
Parameters 183
Responses 183
Details 183
Examples 183
Related Commands 184

pauseTaskState Command 185
Syntax 185
Usage Considerations 185
Parameters 185
Responses 185
Examples 185
Related Commands 185

payloadQuery Command (shortcut: pq) 187
Syntax 187
Usage Considerations 187
Parameters 187
Responses 187
Details 187
Examples 188
Related Commands 189

payloadQueryLocal Command (shortcut: pql) 190
Syntax 190
Usage Considerations 190
Parameters 190
Responses 190
Details 190
Examples 190
Related Commands 191

payloadRemove Command (shortcut: pr) 192
Syntax 192
Usage Considerations 192
Parameters 192
Responses 192
Details 192
Examples 192
Related Commands 192

payloadSet Command (shortcut: ps) 194

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 15

Syntax 194
Usage Considerations 194
Parameters 194
Responses 194
Details 194
Examples 194
Related Commands 195

payloadSlotCount Command (shortcut: psc) 196
Syntax 196
Usage Considerations 196
Parameters 196
Responses 196
Details 196
Examples 196
Related Commands 197

payloadSlotCountLocal Command (shortcut: pscl) 198
Syntax 198
Usage Considerations 198
Parameters 198
Examples 198
Related Commands 198

play Command 199
Syntax 199
Usage Considerations 199
Parameters 199
Responses 199
Details 199
Examples 200
Related Commands 200

popupSimple Command 201
Syntax 201
Usage Considerations 201
Parameters 201
Responses 201
Details 201
Examples 201
Related Commands 202

queryDockStatus Command 203
Syntax 203
Usage Considerations 203
Parameters 203
Responses 203
Details 203
Examples 203
Related Commands 203

queryFaults Command (shortcut: qf) 204
Syntax 204

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 16

Usage Considerations 204
Parameter 204
Responses 204
Details 204
Example 204
Related Commands 206

queryMotors Command 207
Syntax 207
Usage Considerations 207
Parameters 207
Responses 207
Details 207
Examples 207
Related Commands 208

queueCancel Command (shortcut: qc) 209
Syntax 209
Usage Considerations 209
Parameters 209
Responses 209
Details 210
Examples 210
Related Commands 211

queueCancelLocal Command (shortcut: qcl) 212
Syntax 212
Usage Considerations 212
Parameters 212
Responses 213
Details 213
Example 213
Related Commands 214

queueDropoff Command (shortcut: qd) 215
Syntax 215
Usage Considerations 215
ARAM Settings 215
Parameters 215
Responses 215
Details 216
Examples 216
Related Commands 216

queueModify Command (shortcut: qmod) 218
Syntax 218
Usage Considerations 218
ARAM Settings 218
Parameters 218
Responses 219
Details 220
Examples 220

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 17

Related Commands 222
queueModifyLocal Command (shortcut: qmodl) 224
Syntax 224
Usage Considerations 224
ARAM Settings 224
Parameters 224
Responses 225
Details 225
Examples 226
Related Commands 227

queueMulti Command (shortcut: qm) 229
Syntax 229
Usage Considerations 229
ARAM Settings 229
Parameters 229
Responses 230
Details 231
Examples 231
Related Commands 232

queuePickup Command (shortcut: qp) 233
Syntax 233
Usage Considerations 233
ARAM Settings 233
Parameters 233
Responses 233
Details 234
Examples 234
Related Commands 235

queuePickupDropoff Command (shortcut: qpd) 236
Syntax 236
Usage Considerations 236
Parameters 236
Responses 236
Details 237
Examples 237
Related Commands 240

queueQuery Command (shortcut: qq) 241
Syntax 241
Usage Considerations 241
Parameters 241
Responses 241
Details 242
Examples 242
Related Commands 242

queueQueryLocal Command (shortcut: qql) 244
Syntax 244
Usage Considerations 244

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 18

Parameters 244
Responses 245
Details 245
Examples 245
Related Commands 245

queueShow Command (shortcut: qs) 247
Syntax 247
Usage Considerations 247
Parameters 247
Responses 247
Details 247
Examples 248
Related Commands 248

queueShowCompleted Command (shortcut: qsc) 249
Syntax 249
Usage Considerations 249
Parameters 249
Returns 249
Details 249
Examples 250
Related Commands 250

queueShowRobot Command (shortcut: qsr) 251
Syntax 251
Usage Considerations 251
Parameters 251
Responses 251
Details 251
Examples 252
Related Commands 252

queueShowRobotLocal Command (shortcut: qsrl) 253
Syntax 253
Usage Considerations 253
Parameters 253
Details 253
Examples 253
Related Commands 253

quit Command 254
Syntax 254
Usage Considerations 254
Parameters 254
Responses 254
Details 254
Examples 254
Related Commands 254

rangeDeviceGetCumulative Command 255
Syntax 255
Usage Considerations 255

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 19

ARAM Settings 255
Parameters 255
Responses 255
Details 255
Examples 256
Related Commands 256

rangeDeviceGetCurrent Command 257
Syntax 257
Usage Considerations 257
ARAM Settings 257
Parameters 257
Responses 257
Details 257
Examples 257
Related Commands 258

rangeDeviceList Command 259
Syntax 259
Usage Considerations 259
ARAM Settings 259
Parameters 259
Responses 259
Details 259
Examples 259
Related Commands 260

say Command 261
Syntax 261
Usage Considerations 261
Parameters 261
Responses 261
Details 261
Examples 261
Related Commands 261

scanAddGoal Command 262
Syntax 262
Usage Considerations 262
Parameters 262
Responses 262
Details 262
Examples 262
Related Commands 262

scanAddInfo Command 264
Syntax 264
Usage Considerations 264
ARAM Settings 264
Parameters 264
Responses 266
Details 266

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 20

Examples 266
Related Commands 266

scanAddTag Command 267
Syntax 267
Usage Considerations 267
ARAM Settings 267
Parameters 267
Responses 267
Details 267
Examples 268
Related Commands 268

scanStart Command 269
Syntax 269
Usage Considerations 269
Parameters 269
Responses 269
Details 269
Examples 269
Related Commands 269

scanStop Command 271
Syntax 271
Usage Considerations 271
Parameters 271
Responses 271
Examples 271
Related Commands 271

setPayload Command 272
Syntax 272
Usage Considerations 272
Parameters 272
Responses 272
Details 272
Examples 272
Related Commands 272

setPrecedence Command 274
Syntax 274
Usage Considerations 274
Parameters 274
Responses 274
Details 274
Examples 274
Related Commands 274

shutdown Command 275
Syntax 275
Usage Considerations 275
Parameters 275
Responses 275

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 21

Details 275
Examples 275
Related Commands 275

status Command 276
Syntax 276
Usage Considerations 276
Parameters 276
Responses 276
Details 276
Examples 276
Related Commands 276

stop Command 278
Syntax 278
Usage Considerations 278
Parameters 278
Responses 278
Examples 278
Related Commands 278

trackSectors Command 279
Syntax 279
Usage Considerations 279
ARAM Settings 279
Parameters 279
Responses 279
Details 279
Examples 280
Related Commands 281

trackSectorsAtGoal Command 282
Syntax 282
Usage Considerations 282
ARAM Settings 282
Parameters 282
Responses 282
Details 282
Examples 283
Related Commands 284

trackSectorsAtPoint Command 285
Syntax 285
Usage Considerations 285
ARAM Settings 285
Parameters 285
Responses 285
Details 285
Examples 286
Related Commands 287

trackSectorsPath Command 288
Syntax 288

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 22

Usage Considerations 288
ARAM Settings 288
Parameters 288
Responses 288
Details 288
Examples 289
Related Commands 290

undock Command 291
Syntax 291
Usage Considerations 291
Parameters 291
Responses 291
Details 291
Examples 291
Related Commands 291

updateInfo Command 293
Syntax 293
Usage Considerations 293
Parameters 293
Responses 293
Details 293
Examples 293
Related Commands 294

waitTaskCancel Command 295
Syntax 295
Usage Considerations 295
Parameters 295
Responses 295
Examples 295
Related Commands 296

waitTaskState Command 297
Syntax 297
Usage Considerations 297
Parameters 297
Responses 297
Examples 297
Related Commands 297

ARCL Server Messages 299
Robot Fault Messages 300
See Also... 300

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 23

Introduction to ARCL
The Advanced Robotics Command Language (ARCL) is a simple, text-based, command-and-response oper-
ating language for integrating a fleet of Adept mobile robots with an external automation system.

ARCL allows you to operate andmonitor the mobile robot, its accessories and its payload devices over the
network; it is intended for automating your mobile robots. For debugging purposes, you can use Telnet or
PuTTY to access the ARCL commands from a command prompt.

ARCL allows you to submit jobs to the Enterprise Manager, andmonitor the job status from start to finish.
It also allows you tomonitor payload information, if reported, by the robots in the fleet.

The Enterprise Manager (EM) version of ARCL is for use with the Enterprise Manager software and appli-
ance. This hardware and software combination has been specially designed and configured tomanage a
fleet of robots operating in a facility. Therefore, it uses a minimal ARCL command set, because all of the crit-
ical work is being handled directly by the appliance and Enterprise Manager software.

This section discusses the following topics:

Version Requirements 26
How Do I Begin 27
Related Manuals 28
How Can I Get Help? 29

For more information on using the Adept Motivity software, refer to the Adept Motivity Software User's
Guide.

See Also...
Introduction to ARCL on page 25
Enable Options in
Set ARCL Parameters in MobilePlanner on page 30
Connect to ARCL Using a Telnet Client on page 42
Using the ARCL Commands on page 46
ARCL Command Reference on page 70
ARCL Server Messages on page 299

Introduction to ARCL

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 25

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

Version Requirements
This document pertains to ARAM version 4.6 and later.

If you need assistance, see How Can I Get Help? on page 29.

See Also...
How Do I Begin on page 27
RelatedManuals on page 28
How Can I Get Help? on page 29

Version Requirements

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 26

How Do I Begin
Before you can access ARCL, you must complete the following steps:

1. Set ARCL Parameters in MobilePlanner

Define the ARCL server address, port number and password parameters in MobilePlanner, and con-
figure other ARCL parameters. The server port will not open without a password; therefore you
must configure a password before you can connect to ARCL. For details, see Set ARCL Parameters in
MobilePlanner on page 30.

2. Connect to ARCL Using a Telnet Client

Using a Telnet client, connect to ARCL to access and run the ARCL commands on the Motivity plat-
form. For details, see Connect to ARCL Using a Telnet Client on page 42.

After you've set up and established a connection to the ARCL server, you can start using the ARCL com-
mands to operate andmonitor the robotic platform, its accessories and its payload devices over the net-
worksubmit andmonitor jobs that will be performed by the fleet. You can do all of this with or without
MobilePlanner. For more details, see Using the ARCL Commands on page 46.

See Also...
Version Requirements on page 26
How Do I Begin on page 27
RelatedManuals on page 28
How Can I Get Help? on page 29

How Do I Begin

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 27

Related Manuals
In addition to this manual, you may want to refer to the followingmanuals which are available from the
Adept Document Library.

Manual Description

Adept Robot Safety Guide Describes safety information for Adept robots.

Adept Motivity User's
Guide

Describes the Adept Motivity software, including SetNetGo,
MobileEyes, andMobilePlanner.

Adept Lynx Platform
User's Guide

Describes the installation, start-up, operation, andmaintenance of
the Adept mobile robot base.

Adept Lynx Enterprise
Manager 1100 User's
Guide

Describes the installation and operation of the Enterprise Manager
1100 appliance and the Enterprise Manager software.

Adept SmartFleet
EX Appliance User's Guide

Covers the legacy Adept Enterprise Manager system, which ran on
an Adept SmartFleet EX Appliance, for managing a fleet of Lynx
AIVs.

See Also...
Version Requirements on page 26
How Do I Begin on page 27
RelatedManuals on page 28
How Can I Get Help? on page 29

RelatedManuals

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 28

http://www.adept.com/main/KE/DATA/adept_title_index.htm
http://www.adept.com/main/KE/DATA/Robot/RobotSafety/RobotSafety.pdf
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Lynx_UG.pdf
http://www.adept.com/main/KE/DATA/Mobile/Lynx_UG.pdf
http://www.adept.com/main/ke/data/mobile/EnterpriseManagerUG.pdf
http://www.adept.com/main/ke/data/mobile/EnterpriseManagerUG.pdf
http://www.adept.com/main/ke/data/mobile/EnterpriseManagerUG.pdf
http://www.adept.com/main/ke/data/mobile/SmartFleetEXUG.pdf
http://www.adept.com/main/ke/data/mobile/SmartFleetEXUG.pdf

How Can I Get Help?
For details on getting assistance with your Adept software or hardware, you can access the following
information sources on the Adept corporate website:

l For contact information: http://www.adept.com/contact/americas

l For product support information: http://www.adept.com/support/service-and-support/main

l For user discussions, support, and programming examples: http://www.adept.com/forum/

l For further information about Omron Adept Technologies, Inc.: http://www.adept.com

See Also...
Version Requirements on page 26
How Do I Begin on page 27
RelatedManuals on page 28
How Can I Get Help? on page 29

How Can I Get Help?

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 29

http://www.adept.com/contact/americas
http://www.adept.com/support/service-and-support/main
http://www.adept.com/forum/
http://www.adept.com/

Set ARCL Parameters in MobilePlanner
This section describes how to access the configuration items in the MobilePlanner software. It describes
the following:

l Accessing the Configuration Options on page 31

l Understanding the Configuration Parameters on page 37

l Outgoing ARCL Commands Parameters on page 39

l Set ARCL Parameters in MobilePlanner on page 30

Set ARCL Parameters in MobilePlanner

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 30

Accessing the Configuration Options
These sections allow you to access configuration parameters that control the ARCL server and its inter-
action with connected clients.

CAUTION: The server port will not open without a password. Therefore, you must configure a password
before you can connect to ARCL.

To access ARCL configuration options from MobilePlanner:

1. Open the MobilePlanner software, version 4.0 or later, and connect to the mobile robot. Refer to the
Adept Motivity User's Guide for details on installing and starting MobilePlanner.

2. From the MobilePlanner > Config, select the Robot Interface tab.

3. Select ARCL server setup from the Sections: column. These parameters allow you to control the cli-
ent-server connection between an offboard client process (such as Telnet or PuTTY) and ARCL. The
ARCL server setup parameters are shown in the following figure.

Incoming connections refer to a client initiating the connection to the Enterprise Manager or a robot.
Multiple simultaneous connections are allowed and supported.

NOTE: ARCL server setup lets you configure the port for incoming connections. This does not
affect outgoing connections.

Accessing the Configuration Options

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 31

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

ARCL Server Setup Parameters

For more information on using a client (like Telnet or PuTTY), see Connect to ARCL Using a Telnet Cli-
ent on page 42.

4. Select Outgoing ARCL commands from the Sections: column to display the parameters that allow
you to configure commands that are automatically executed on the connection indicated in the Out-
going ARCL connection setup. The parameters are shown in the following figure. For more details,
see Outgoing ARCL Commands Parameters on page 39.

Accessing the Configuration Options

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 32

Outgoing ARCL Commands

5. Select Outgoing ARCL connection setup from the Sections: column to display the parameters that
allow you to send data from the robot using ARCL commands, intended to connect to the application
payload. The parameters are shown in the following figure. For more details, refer to Outgoing ARCL
Connection Setup Parameters on page 38.

Accessing the Configuration Options

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 33

Outgoing ARCL Connection Setup

6. After the configuration options are set, click the Save button on the toolbar to save the changes to
the Configuration file. Changes do not take effect until: the robot is idle and stationary; the Con-
figuration changes are saved.

7. Select Outgoing Enterprise ARCL commands from the Sections: column to display the parameters
that allow you to configure commands that are automatically executed on the connection indicated
in the Outgoing Enterprise ARCL connection setup. For more details, see Outgoing Enterprise ARCL
Commands Parameters on page 41.

Accessing the Configuration Options

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 34

Outgoing Enterprise ARCL Commands

8. Select Outgoing Enterprise ARCL connection setup from the Sections: column to display the para-
meters that allow you to send data from the Enterprise Manager using ARCL commands, intended to
connect to the facility WMS/MES. For more details, refer to Outgoing Enterprise ARCL Connection
Setup Parameters on page 40.

Accessing the Configuration Options

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 35

Outgoing Enterprise ARCL Connection Setup

9. After the configuration options are set, click the Save button on the toolbar to save the changes to
the Configuration file. Changes do not take effect until: the robot is idle and stationary; the Con-
figuration changes are saved.

Accessing the Configuration Options

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 36

Understanding the Configuration Parameters
The configuration parameters are grouped by function - each functional group is accessed from the alpha-
betical list in the left pane. The corresponding configuration parameters are listed in a tabular format on the
configuration pages, as shown in the previous figures. The parameters are organized alphabetically. You
can sort the list in ascending or descending order by name, value, min, or max.

Each parameter has a description that briefly describes the function of the parameter. The selected para-
meter's help description is located in the Description column and, optionally, at the bottom of the window
when the entire contents can't be shown in the Description column. For an example, see the following fig-
ure.

Parameter Help

Understanding the Configuration Parameters

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 37

Outgoing ARCL Connection Setup Parameters
The Outgoing ARCL connection setup parameters are used to instruct the AIV to initiate an outgoing ARCL
TCP connection to another device on the network. This approach can be used in lieu of requiring that the
other device initiate an incoming connection to the AIV.

In order to use this feature, the OutgoingHostname needs to be set to a string and the OutgoingPort needs
to be a non-zero number.

Use of the outgoing ARCL connections:

l The outgoing ARCL connection can be used to connect to a payload on top of the AIV. The AIV can
be configured so that it will not autonomously drive unless the outgoing connection is alive, by set-
ting the Outgoing ARCL Connection setup -> RequireConnectionToPathPlan parameter to True.

This is useful when it would be unsafe for the AIV tomove at certain times, such as when an auto-
mated load or unload is being performed. The payload is responsible for signaling when it is safe to
move, so if the connection from the payload to the AIV is lost, it would be unsafe for the AIV to
move without knowing the payload status.

There may be hand-shaking involved between the AIV's payload and the factory equipment, to
determine when the load or unload is complete, making it safe for the AIV tomove.

l The outgoing connection can be used to automatically execute certain ARCL commands at specified
intervals. This can be useful for gathering certain information without requiring that the applic-
ation, running on the connected device, continuously request the data.

Outgoing ARCL Connection Setup Parameters

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 38

Outgoing ARCL Commands Parameters
The Outgoing ARCL command parameters allow you to set the mobile robot up to automatically generate
ARCL commands at regular intervals. You can send one or more ARCL commands; to sendmultiple com-
mands, separate each commandwith a pipe charactger (|). For example, set the OutGoingCommands1
parameter to:

doTaskInstant sayInstant "Enabling motors." | enableMotors

Then set the OutGoingCommands1Seconds parameter to:

60

Every 60 seconds, the mobile robot will announce, "Enablingmotors" and then attempt to enable the
motors.

The outgoing host will receive the ARCL responses:

Completed doing instant task: sayInstant "Enabling motors."

Then it will respondwith, either:

Motors enabled

or

Estop pressed, cannot enable motors

Outgoing ARCL Commands Parameters

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 39

Outgoing Enterprise ARCL Connection Setup Parameters
The Outgoing Enterprise ARCL connection setup parameters are used to instruct the Enterprise Manager
to initiate an outgoing ARCL TCP connection to another device on the network. This approach can be used
in lieu of requiring that the other device initiate an incoming connection to the Enterprise Manager.

There may be hand-shaking involved between the Enterprise Manager and the factory equipment, to
determine when the command should be executed.

In order to use this feature, the OutgoingHostname needs to be set to a string and the OutgoingPort needs
to be a non-zero number.

Use of the outgoing ARCL connections:

l The outgoing connection can be used to automatically execute certain ARCL commands at specified
intervals. This can be useful for gathering certain information without requiring that the applic-
ation, running on the connected device, continuously request the data.

Outgoing Enterprise ARCL Connection Setup Parameters

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 40

Outgoing Enterprise ARCL Commands Parameters
The Outgoing Enterprise ARCL command parameters allow you to set the Enterprise Manager up to auto-
matically generate ARCL commands at regular intervals. You can send one or more ARCL commands; to
sendmultiple commands, separate each commandwith a pipe character (|). For example, set the OutGo-
ingCommands1 parameter to:

Queueshowrobot default echoit

QueueRobot: “Robot1” UnAvailable EStopPressed echoit
QueueRobot: “Robot2” UnAvailable Interrupted echoit
QueueRobot: “Robot3” UnAvailable InterruptedButNotYetIdle echoit
QueueRobot: “Robot4” Available Available echoit
QueueRobot: “Robot5” InProgress Driving echoit
QueueRobot: “Robot6” UnAvailable NotUsingEnterpriseManager echoit
QueueRobot: “Robot7” UnAvailable UnknownBatteryType echoit
QueueRobot: “Robot8” UnAvailable ForcedDocked echoit
QueueRobot: “Robot9” UnAvailable NotLocalized echoit
QueueRobot: "patrolbot" UnAvailable Fault_Driving_Application_faultName echoit

EndQueueShowRobot

Then you could parse the output to compare the number of robots connected vs. how many robots should
be connected, and generate an alarm if there is a mismatch.

See Also...
Introduction to ARCL on page 25
Enable Options in
Set ARCL Parameters in MobilePlanner on page 30
Connect to ARCL Using a Telnet Client on page 42
Using the ARCL Commands on page 46
ARCL Command Reference on page 70
ARCL Server Messages on page 299

Outgoing Enterprise ARCL Commands Parameters

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 41

Connect to ARCL Using a Telnet Client
This section tells you how to connect to your mobile robot to ARCL using a client, such as Telnet or PuTTY.

Connect to ARCL Using a Telnet Client

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 42

Setting the Connection Parameters
1. Open the MobilePlanner software, version 4.0 or later, and connect to the mobile robot. Refer to the

Adept Motivity User's Guide for details on installing and starting MobilePlanner.

2. From the Configuration tab, select the Robot Interface tab.

3. Select ARCL Server Setup from the Sections column. The ARCL Server Setup parameters are shown
in the following figure.

ARCL Server Setup Parameters

These parameters allow you to control the client-server connection, see Understanding the Con-
figuration Parameters on page 37 for details.

4. Enter a password for the Telnet client for the Password parameter. If a password already exists,
make a note of it so that you can open the ARCL server from the Telnet connection.

Setting the Connection Parameters

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 43

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

Connecting to ARCL
The following instructions describe how to connect to ARCL using the Command Prompt window in the
Microsoft Windows operating system. You can also use a terminal-emulation utility, such as PuTTY. For
details on PuTTY, see the PuTTY website: http://www.putty.org.

1. On aWindows-based PC, open the Command Prompt window.

In Windows, hold down the "Window" key and the "R" key to open the Run dialog box. Type cmd to
display the command terminal.)

NOTE: On someWindows installations, you may need to enable Telnet using:

 Control Panel > Programs and Features > Turn Windows feature on or off.

2. Start Telnet using the ARCL server address and the port number specified in the ARCL Server Setup
Parameters. For example:

Telnet 192.168.0.44 7171

3. Enter the password that you set in Step 5, above. If you mis-type the password, you will have to
restart the Telnet client.

After you have successfully logged-in, the server responds with a list of supported commands and a
brief description of each. See the example in the following figure.

NOTE: The list of available commands depends on your system configuration.

Example Command List after Login

4. If needed, you can enter the echo off command to prevent your input from echoing (typing double
characters).

5. When you are finished, use the quit command to properly close the connection.

After you connect to ARCL, you can execute any of the ARCL commands available. For a complete list of
the different ARCL commands and their arguments, refer to ARCL Command Reference on page 70.

Connecting to ARCL

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 44

http://www.putty.org/

ARCL supports multiple client/server connections through the TCP/IP socket. However, commands and
query responses are connection-specific. For example, you can have two Telnet clients connected; how-
ever, only the one that requested a oneLineStatus response actually receives the status message.

See Also...
Introduction to ARCL on page 25
Enable Options in
Set ARCL Parameters in MobilePlanner on page 30
Connect to ARCL Using a Telnet Client on page 42
Using the ARCL Commands on page 46
ARCL Command Reference on page 70
ARCL Server Messages on page 299

See Also...

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 45

Using the ARCL Commands
After you have established a connection to the ARCL server, you are ready to operate andmonitor the
mobile robot using the ARCL commands. The following topics discuss the use of these commands for cer-
tain tasks. To view an alphabetical list and description of each ARCL command, refer to ARCL Command
Reference on page 70.

This section discusses the following topics:

See Also... 46
Understanding the Commands 47
Document Conventions 47
CommandNotes 48
Data Types 48
Status and Error Messages 50
Status Conditions 51

Using ARCL Variables 55
Using Tasks and Macros 56
Forever Tasks 57

Using Configuration Commands 58
Using the Queuing Commands 60
Working With Payloads 61
Creating a Map 63
Tracking Sectors 64
Navigating and Localizing 65
Using Range Devices and Custom Sensors 66
Monitoring the I/O Ports 68

The ARCL command set is evolutionary and backward compatible. To see added commands, consult the
ARCL help list when connecting with a new ARAM version. For more details on the help command, see help
Command on page 141.

See Also...
Introduction to ARCL on page 25
Enable Options in
Set ARCL Parameters in MobilePlanner on page 30
Connect to ARCL Using a Telnet Client on page 42
Using the ARCL Commands on page 46
ARCL Command Reference on page 70
ARCL Server Messages on page 299

Using the ARCL Commands

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 46

Understanding the Commands
This section describes the document conventions, command notes, and status and error messages.

The commands are discussed by task in this chapter. To view commands presented in alphabetical order,
see the ARCL Command Reference on page 70.

Document Conventions

Command name (shortcut: cn)

The command can be invokedwith its full name or, in some cases, with a shortcut. When there is a short-
cut, it will be listed in parentheses after the command name in the title of the command description. The
syntax, usage, and parameters are the same, whether the full command name or the shortcut is used.

Syntax

The ARCL commands are not case sensitive. In this guide, commands are shown in mixed case and bold
type. Required parameters are shown in angled brackets and regular type; whereas, optional parameters
are shown in square brackets [] and regular type. For example:

queuePickup<goalName> [priority] [jobId]

In this example, the <goalName> parameter is required; the [priority] and [jobId] parameters are
optional.

goToRouteGoal<routeName> <goalName> [index]

In this example, the <routeName> and<goalName> parameters are required; the [index] parameter is
optional.

Usage Considerations

This section describes any special considerations that must be followedwhen using the command. It also
describes where the command can be used, as follows:

l This ARCL command is only available on the robot.

l This ARCL command is available only on the Enterprise Manager.

l This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

This section lists any ARAM settings that must be enabled to use the command.

Parameters

This section describes each of the required and optional command parameters (such as goalname, rout-
name, echo, etc.).

Understanding the Commands

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 47

Responses

This section shows the information returned by the command.

Details

This section provides more details about the functions of the command.

Examples

This section provides examples of correctly-formatted command lines are presented in this section.

Related Commands

This section lists additional commands that are similar or often usedwith this command.

Command Notes

Below are some helpful notes to remember when using ARCL commands:

l ARCL responds with the command’s syntax if you omit any or all required parameters.

l Extraneous parameters are ignored.

l ARCL limits commands to a maximum of 5,000 ASCII characters

l As a general rule, use double quotes for string parameters, especially if there are spaces in the
string.

l Mistyped Telnet commands and parameters cannot be edited on the command line. You have to
completely re-type the command.

l Mistyped or non-existent commands are rejected with the response, “Unknown command".

l Although commands are not case-sensitive, some parameters are case-sensitive.

Data Types

The following table shows all the available ARCL data types (not all of these may apply to a particular com-
mand):

CommandNotes

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 48

Parameter Data Type Max Length/Range

cancelType string max length: 127 char-
acters

cancelValue string max length: 127 char-
acters

DROPOFFgoalName string max length: 127 char-
acters

DROPOFFpriority integer (signed long) range: –2147483648 to
2147483647

echoString2 string max length: 127 char-
acters

goalName string max length: 127 char-
acters

jobId2 string max length: 127 char-
acters

payload slot number integer (signed long) range: 1 to
2147483647

payload slot string1 string max length: 127 char-
acters

PICKUPgoalName string max length: 127 char-
acters

PICKUPpriority integer (signed long) range: –2147483648 to
2147483647

priority integer (signed long) range: –2147483648 to
2147483647

queryType string max length: 127 char-
acters

queryValue string max length: 127 char-
acters

reason2 string max length: 127 char-
acters

robotName1 string max length: 127 char-
acters

1These parameters support spaces, and need to be enclosed in quotes if they
include spaces.

2These parameters do not support spaces or double quotes.

Data Types

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 49

Status and Error Messages

ARCL sends important status updates to the connected client for certain commands, such as goto
goalName. For example, when the mobile robot first starts toward the goal, the following is sent to the cli-
ent:

Going to goal goalName

When the robot arrives at the goal, a status update of the following is displayed:

Arrived at goal goalName

If ARCL is unable to execute the command because of a command sequence error, a non-existent file-
name, or because a feature was not set up properly, a SetUpError is displayed. For example, if you attempt
to execute listAdd or listExecute before entering the command listStart, the following error is displayed:

SetUpError: You need to start a list before you can add to it.

All other argument errors result in a two-line ARCL response, with two distinct error messages, such as the
following:

CommandError: goto dock12
CommandErrorDescription: No goal 'dock12'

Occasionally, ARCL sends reports without prompting, for example, when there are changes in the robot’s
docking and charging status.

ARCL sends important status updates to the connected client for certain commands, such as
queuePickup goalName. For example, when the job is first received, then the following is sent to the cli-
ent:

queuepickup goal "<goalName>” with priority 10, id PICKUP138 and jobId JOB138
successfully queued

When the job has been completed, this update message is sent:

QueueUpdate: PICKUP138 JOB138 10 Completed None Goal "<goalName>" "robotName"
04/08/2013 13:46:34 0

If ARCL is unable to execute the command because of a command sequence error, a non-existent file-
name, or because a feature was not set up properly, a SetUpError is displayed. For example, if you attempt
to execute listAdd or listExecute before entering the command listStart, the following error is displayed:

SetUpError: You need to start a list before you can add to it.

All other argument errors result in a two-line ARCL response, with two distinct error messages, such as the
following:

CommandError: queuePickup goal6
CommandErrorDescription: queuePickup no such goal "goal6"

ARCL sends status update messages without prompting, for example, when there are changes in a robot’s
or a job's state.

Status and Error Messages

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 50

Refer to ARCL Server Messages on page 299 for a list of unpromptedmessages.

Status Conditions

The following table shows the possible robot and job status conditions:

Status Conditions

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 51

Status Substatus

Pending None

Pending AssignedRobotOffLine

Pending NoMatchingRobotForLinkedJob

Pending NoMatch-
ingRobotForOtherSegment

Pending NoMatchingRobot

Pending ID_PICKUPxx <where
PICKUPxx is the jobSegment
ID for which this Job Segment
is waiting>

Pending ID_DROPOFFxx <where
DROPOFFxx is the jobSegment
ID for which this Job Segment
is waiting>

Available Available

Available Parking

Available Parked

Available DockParking

Available DockParked

Interrupted None

InProgress UnAllocated

InProgress Allocated

InProgress BeforePickup

InProgress BeforeDropoff

InProgress BeforeEvery

InProgress Before

InProgress Buffering

InProgress Buffered

InProgress Driving

InProgress After

InProgress AfterEvery

Status Conditions

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 52

Status Substatus

InProgress AfterPickup

InProgress AfterDropoff

Completed None

Cancelling None

Cancelled None

Cancelling <application_supplied_can-
celReason_string>

Cancelled <application_supplied_can-
celReason_string>

BeforeModify None

Inter-
ruptedByModify

None

AfterModify None

UnAvailable NotUsingEnterpriseManager

UnAvailable UnknownBatteryType

UnAvailable ForcedDocked

UnAvailable Lost

UnAvailable EStopPressed

UnAvailable Interrupted

UnAvailable InterruptedButNotYetIdle

UnAvailable Fault_Driving_Application_
<application_supplied_string>

UnAvailable OutgoingARCLConnLost

UnAvailable Parking

UnAvailable DockParking

UnAvailable ModeIsLocked

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55

Status Conditions

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 53

Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Status Conditions

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 54

Using ARCL Variables
The following is a list of variables that you can use with any ARCL command.

Variable Description/Range of Values

$g Represents the current goal name. For example: Going to goal $g.

$y Represents the year (2xxx)

$m Represents the month (1-12)

$d Represents the day (1-7)

$H Represents the hour (0-23)

$M Represents the minute (0-59)

$S Represents the second (0-59)

$T Represents the current heading (Th) of the mobile robot (degrees)

$X Represents the current X position of the mobile robot in the map (mm)

$Y Represents the current Y position of the mobile robot in the map (mm)

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Using ARCL Variables

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 55

Using Tasks and Macros
ARCL’s list commands let you assemble and execute a sequence of tasks, or execute macros. The following
ARCL commands allow you to carry out a single task, create a task list, or execute a macro:

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

play Command on page 199

say Command on page 261

ARCL also allows you to create a task list, add tasks to the list, and then execute the task list. In doing so,
you can make use of the tasks that are available in the MobilePlanner software for building routes andmac-
ros. Refer to the list commands for details.

Initialize a list first with the listStart command. This also overwrites a list that you may’ve already started,
but have yet to execute. Use the listAdd commandwith a task name as argument and followed by any and
all task arguments to put a task into the current list. Use listExecute to perform the series of tasks, each in
order first in, first out. The list may be executed only once, and you must start with listStart before cre-
ating and executing a new list sequence of tasks.

Here is a simple example that has the robot travel to the goal Lobby and, when it gets there, says its name
and then asks for your name. The regular text lines are what you might type; the lines in quotes are the
messages that the ARCL server generates as you send it commands and it completes its tasks:

listStart
“List being cleared”
“Making new list”
listAdd goto Lobby
“Added task goto Lobby”
listAdd say My name is PatrolBot.
“Added task say My name is PatrolBot.”
listAdd say What is your name?
“Added task say What is your name?”
listExecute
“Executing list”
“Successfully finished task list”

To carry out a single task use the doTask command. For example:

doTask goto goal_name

Using Tasks andMacros

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 56

Forever Tasks

There are a few tasks in the MobilePlanner software that endwith the qualifier "Forever". This means that
the task continues until explicitly instructed to do something else. The patrolForever command, for
example, causes the robot to continuously patrol the specified route. In other words, it keeps repeating the
route until it is commanded to stop.

Therefore, it is best to avoid using "Forever" robot tasks in a task list or with the doTask command in ARCL.
Instead use the dock or patrol ARCL commands, which serve the same purpose. The differences are subtle,
but the dock and patrol commands are more appropriate for the job.

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Forever Tasks

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 57

Using Configuration Commands
ARCL allows you change the value of one or more ARAM operating parameters. For example, you can tell it
to use a different map or change its top speedwhile driving. The following configuration commands are sup-
ported:

configAdd Command on page 85

configParse Command on page 87

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

NOTE: You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclCon-
fig parameter in the ARCL server setup section of the Configuration > Robot Interface tab. For
more information, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect
until: the robot is idle and stationary; the Configuration changes are saved.

Use the configStart command to initialize a configuration list, similar to creating a task list. The configStart
command overwrites any previous list. Use the configAdd command to enter sections and related con-
figuration parameter keywords and values to the list. The configParse command sends the configuration
parameters to ARAM, which implements the configuration changes.

When creating the configuration list, you must first identify which Section the configuration parameter(s)
is/are associated, and then provide the parameter’s keyword and new value. Configuration keywords are
case-sensitive. For example, to change to a different map on the robot:

configStart
New config starting
configAdd Section Files
Added 'Section Files' to the config
configAdd Map theNewMap.map
Added 'Map theNewMap.map' to the config
configParse
Will parse config
Map changed
Config parsed fine

Notice that the "Map changed" response was not generated by ARCL, but rather is an ARAM event warning
that is sent automatically to all attached clients. See ARCL Server Messages on page 299 for details. ARAM
catches and reports errors both for configuration and system issues, for example if it is unable to find a file
or correctly load amap file.

To view ARAM configuration details and parameter values, use the ARCL commands: getConfigSectionList,
getConfigSectionValues, and getConfigSectionInfo.

Using Configuration Commands

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 58

You can also create andmanage custom configuration sections and parameters from ARCL. These new sec-
tions and parameters are saved into a downloaded configuration file. However, new sections and para-
meters do not persist, even if recently uploaded from a saved configuration file. Instead, you must execute
the newConfigParam commandwhenever restarting ARAM. However, the last value given to the para-
meter persists.

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

'

Using Configuration Commands

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 59

Using the Queuing Commands
The ARCL queuing commands are usedwith the Enterprise Manager. They allow you to request a mobile
robot to drive to a goal (for example, for a pickup) and then drive to another goal (for example, for a
dropoff).

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queueModify Command (shortcut: qmod) on page 218

queueModify Command (shortcut: qmod) on page 218

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Using the Queuing Commands

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 60

Working With Payloads
Using the ARCL payload commands, you can view the number of slots on a robot, assign names to those
slot numbers, define the object (or payload) you want the robot to pick up or drop off, see what objects the
robot is carrying, and you can remove the object.

Using the ARCL payload commands, you can view the number of slots on a robot and see what objects the
robot is carrying.

The following commands are supported:

getPayload Command on page 132

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Slots represent containers where the objects (payload) are carried on top of the robot. You can assign a
name to the slot numbers that represents the object the robot is to carry from one goal to the next. In the
example below, slot 1 is carrying "Books".

payloadSet 1 Books

To configure the number of slots on a robot, in the custom arguments section on the robot add:

-payloadSlots xx

The default number of slots is 4. Note that slot numbering starts at 1. There is no slot 0; that would indic-
ate there is no payload.

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

WorkingWith Payloads

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 61

WorkingWith Payloads

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 62

Creating a Map
ARCL allows you to start and stop creating a map scan, as well as add custom markers to the mapwhile cre-
ating the scan. These markers can be sensor readings or other data.

You must enable the ArclScan setting in the ARCL server setup section of the Configuration > Robot
Interface tab in the MobilePlanner software.

Once enabled, the following commands are supported:

scanAddGoal Command on page 262

scanAddInfo Command on page 264

scanAddTag Command on page 267

scanStart Command on page 269

scanStop Command on page 271

For details on these commands, refer to the ARCL Command Reference on page 70.

To start a map scan using scanStart, provide a name string for the 2d scan file that gets created. No argu-
ment is needed for the scanStop command, since only one scan may be active at a time. Also, provide a
name and optional description (in that order) with the scanAddGoal command, to place a goal in the map.
For more details, see scanStart Command on page 269, scanStop Command on page 271 and scanAddGoal
Command on page 262.

The scanAddInfo and scanAddTag commands identify custom objects and then locate markers for them in
the map. To use these:

l Define the custom objects with the scanAddInfo command. For details, see scanAddInfo Command
on page 264.

l Addmarkers while scanning at positions throughout the mapwith the scanAddTag command. For
details, see scanAddTag Command on page 267.

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Creating a Map

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 63

Tracking Sectors
Sectors are designated areas in the mapwhich can trigger certain Motivity tasks, simple messaging or
alternative mobile behaviors. For example, a speed sector-enabled robot (set in SetNetGo with the
enableSpeedSectors startup parameter) can adopt the defined speed limit for a SlowSector whenever it is
located within the bounds of any of that speed sector’s type in the map. You can also add your own sectors
to the map, with a custom definition, either addedmanually or using the scanAddInfo command. Then use
MobilePlanner to define regions in the map for your sectors.

Enable ARAM tracking for each of the sectors through SetNetGo. Once enabled, ARCL supports several com-
mands that report which sectors your Motivity platform is in based on points, goals and paths:

trackSectors Command on page 279

trackSectorsAtGoal Command on page 282

trackSectorsAtPoint Command on page 285

trackSectorsPath Command on page 288

The response to all commands is a list of the pertinent sectors:

TrackSectors: <SectorType> <Sector name, if designated in the map>
...
End of TrackSectors

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Tracking Sectors

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 64

Navigating and Localizing
The following ARCL commands are available for navigating and localizing the robot.

distanceBetween Command on page 100

distanceFromHere Command on page 102

follow Command on page 116

etaRequest Command on page 111

localizeToPoint Command on page 151

getGoals Command on page 124

goto Command on page 135

gotoPoint Command on page 137

gotoRouteGoal Command on page 139

patrol Command on page 177

patrolOnce Command on page 179

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Navigating and Localizing

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 65

Using Range Devices and Custom Sensors
ARAM uses range-device readings, both real and virtual, to plan a global path and to detect obstacles along
the way so that it can recalculate a local path plan if needed. Range devices include laser- range finders,
SONAR, forbidden lines and areas, single-robot sectors, andmany others. The following commands are sup-
ported in ARCL for using range devices and custom sensors:

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

You can use the ARCL command rangeDeviceList, to retrieve a list from the mobile robot. Like single-robot
sectors and forbidden spaces, some ranging sensors are location dependent in that their position in the
map is fixed. Other ranging data, like from SONAR, are transient and independent of where the Motivity
platform is on the map.

The rangeDeviceGetCurrent command retrieves a series of absolute X and Ymap coordinates in mil-
limeters related to the range device’s active reflections off an obstacle or relative to the position of the plat-
form (in relation to the virtual sensor). The rangeDeviceGetCumulative command responds with the
absolute X and Ymap coordinates of persistent readings that ARAM tracks for avoidance while planning a
local path.

You can influence local path planning and obstacle avoidance with custom sensors through ARCL. You do
this by enabling custom startup arguments in SetNetGo, refer to for details. Your application software then
tells ARAM of the custom readings from the device, one at a time. Use customReadingAdd for robot-local
coordinates relative to the center of the platform , this is useful for real ranging devices onboard. Use cus-
tomReadingAbsoluteAdd for map-absolute coordinates, which is useful for location-dependent virtual
areas. The customReadingClear command removes all of the particular custom device’s ranging data from
ARAM if it hadn’t already expired.

Enable a custom global planning sensor in order to influence ARAM’s global path planner. For example, you
can create a custom door global sensor which, at certain times set by your application, is “closed” by cus-
tomReadAdd data. Once set, ARAM will not plan a global path through the closed door andwill treat it as an
obstacle while driving past.

See Also...
Understanding the Commands on page 47
Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63

Using Range Devices and Custom Sensors

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 66

Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Using Range Devices and Custom Sensors

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 67

Monitoring the I/O Ports
If your hardware and software supports external connections, you can enable or disable the ports for ARCL
control in SetNetGo.

Warning! Do not attempt to connect I/O ports if your system did not come with them. If one or more
I/O ports are incorrectly assigned or inadvertently triggered, the robot or its systems can be physically
damaged. Contact Adept technical support for more information.

You can control andmonitor the I/O ports with the following ARCL input and output commands:

analogInputList Command on page 74

analogInputQueryRaw Command on page 75

analogInputQueryVoltage Command on page 76

inputList Command on page 142

inputQuery Command on page 144

outputList Command on page 171

outputOff Command on page 173

outputOn Command on page 174

outputQuery Command on page 175

The following examples show how inputs and outputs can be listed and queried, and how outputs can be
turned on/off:

inputList
digin1
End of inputList

inputQuery digin1
Input: digin1 off

outputList digout1 digout2
End of outputList

outputQuery digout1
Output: digout1 off

outputOn digout1
Output: digout1 on

outputOff digout1
Output: digout1 off

See Also...
Understanding the Commands on page 47

Monitoring the I/O Ports

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 68

Using ARCL Variables on page 55
Using Tasks andMacros on page 56
Using Configuration Commands on page 58
Using the Queuing Commands on page 60
WorkingWith Payloads on page 61
Creating a Map on page 63
Tracking Sectors on page 64
Navigating and Localizing on page 65
Using Range Devices and Custom Sensors on page 66
Monitoring the I/O Ports on page 68

Monitoring the I/O Ports

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 69

ARCL Command Reference
This section provides a description of each command in the ARCL command set. The command descrip-
tions are provided in alphabetical order.

analogInputList Command 74
analogInputQueryRaw Command 75
analogInputQueryVoltage Command 76
applicationFaultClear Command 77
applicationFaultQuery Command 79
applicationFaultSet Command 81
arclSendText Command 83
clearAllObstacles Command 84
configAdd Command 85
configParse Command 87
configStart Command 89
connectOutgoing Command 91
createInfo Command 92
customReadingAddAbsolute Command 94
customReadingAdd Command 96
customReadingsClear Command 98
distanceBetween Command 100
distanceFromHere Command 102
dock Command 104
doTask Command 105
doTaskInstant Command 107
echo Command 109
enableMotors Command 110
etaRequest Command 111
executeMacro Command 112
faultsGet Command 114
follow Command 116
getConfigSectionInfo Command 117
getConfigSectionList Command 119
getConfigSectionValues Command 121
getDateTime Command 123
getGoals Command 124
getInfo Command 126
getInfoList Command 128

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 70

getMacros Command 130
getPayload Command 132
getPrecedence Command 133
getRoutes Command 134
goto Command 135
gotoPoint Command 137
gotoRouteGoal Command 139
help Command 141
inputList Command 142
inputQuery Command 144
listAdd Command 145
listExecute Command 147
listStart Command 149
localizeToPoint Command 151
log Command 153
mapObjectInfo Command 155
mapObjectList Command 157
mapObjectTypeInfo Command 159
mapObjectTypeList Command 161
newConfigParam Command 163
newConfigSectionComment Command 165
odometer Command 167
odometerReset Command 168
oneLineStatus Command 169
outputList Command 171
outputOff Command 173
outputOn Command 174
outputQuery Command 175
patrol Command 177
patrolOnce Command 179
patrolResume Command 181
pauseTaskCancel Command 183
pauseTaskState Command 185
payloadQuery Command (shortcut: pq) 187
payloadQueryLocal Command (shortcut: pql) 190
payloadRemove Command (shortcut: pr) 192
payloadSet Command (shortcut: ps) 194
payloadSlotCount Command (shortcut: psc) 196

Adept ARCL Reference Guide, Updated: 9:26:48 AM

Page 71

payloadSlotCountLocal Command (shortcut: pscl) 198
play Command 199
popupSimple Command 201
queryDockStatus Command 203
queryFaults Command (shortcut: qf) 204
queryMotors Command 207
queueCancel Command (shortcut: qc) 209
queueCancelLocal Command (shortcut: qcl) 212
queueDropoff Command (shortcut: qd) 215
queueModify Command (shortcut: qmod) 218
queueModifyLocal Command (shortcut: qmodl) 224
queueMulti Command (shortcut: qm) 229
queuePickup Command (shortcut: qp) 233
queuePickupDropoff Command (shortcut: qpd) 236
queueQuery Command (shortcut: qq) 241
queueQueryLocal Command (shortcut: qql) 244
queueShow Command (shortcut: qs) 247
queueShowCompleted Command (shortcut: qsc) 249
queueShowRobot Command (shortcut: qsr) 251
queueShowRobotLocal Command (shortcut: qsrl) 253
quit Command 254
rangeDeviceGetCumulative Command 255
rangeDeviceGetCurrent Command 257
rangeDeviceList Command 259
say Command 261
scanAddGoal Command 262
scanAddInfo Command 264
scanAddTag Command 267
scanStart Command 269
scanStop Command 271
setPayload Command 272
setPrecedence Command 274
shutdown Command 275
status Command 276
stop Command 278
trackSectors Command 279
trackSectorsAtGoal Command 282
trackSectorsAtPoint Command 285

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 72

trackSectorsPath Command 288
undock Command 291
updateInfo Command 293
waitTaskCancel Command 295
waitTaskState Command 297

See Also...
Introduction to ARCL on page 25
Enable Options in
Set ARCL Parameters in MobilePlanner on page 30
Connect to ARCL Using a Telnet Client on page 42
Using the ARCL Commands on page 46
ARCL Command Reference on page 70
ARCL Server Messages on page 299

Adept ARCL Reference Guide, Updated: 9:26:48 AM

Page 73

analogInputList Command

analogInputList Command
Lists the named analog inputs.

Syntax

analogInputList

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns a series of "AnalogInputList" in the following format:

AnalogInputList: <minV> <maxV> <maxRaw> <name>

Details

The analogInputList command returns the list of analog input ports with specs enabled through SetNetGo.
<minV> and<maxV> are doubles converted to volts, and<maxRaw> is an integer of the maximum
value of the analog to digital conversion (minRaw is always 0); 1023 for a 10-bit A/D converter, for
example.

Examples

To view the list of analog input ports, enter the following:

analogInputList

Related Commands

analogInputQueryRaw Command on page 75

analogInputQueryVoltage Command on page 76

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 74

analogInputQueryRaw Command

analogInputQueryRaw Command
Queries the state of an analog input by raw.

Syntax

analogInputQueryRaw <name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the device to query.

Responses

The command returns the state of the specified analog port in the following format:

AnalogInputRaw: <name> <rawValue>

Details

The analogInputQueryRaw command queries the state of the specified analog input. The data returned by
analogInputQueryRaw is an integer called <rawValue>.

To convert the <rawValue> to voltage, use the following equation:

<minVoltage> + (<maxVoltage> - <minVoltage>) * <rawValue> / <maxRaw>

Related Commands

analogInputList Command on page 74

analogInputQueryVoltage Command on page 76

Adept ARCL Reference Guide, Updated: 9:26:48 AM

Page 75

analogInputQueryVoltage Command

analogInputQueryVoltage Command
Queries the state of an analog input by voltage.

Syntax

analogInputQueryVoltage <name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the device to query.

Responses

The command returns the state of the specified analog port in the following format:

AnalogInputVoltage: <name> <V>

where <V> is a double converted to volts.

Details

The analogInputQueryRaw command queries the state of the specified analog input by voltage. The data
returned by analogInputQueryVoltage is a voltage as a double between <minVoltage> and
<maxVoltage>.

Related Commands

analogInputList Command on page 74

analogInputQueryRaw Command on page 75

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 76

applicationFaultClear Command

applicationFaultClear Command
Clears a named application fault.

Syntax

applicationFaultClear <name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the fault.

Responses

The command returns:

FaultCleared: Fault_<drivingFault or criticalFault> <name> "<short_desc>" "<long_desc>"
bool_driving bool_critical bool_applicaiton
...
ApplicationFaultClear cleared <name>

Details

The faultsGet command returns the list of faults that are currently triggered. For Enterprise Manager, if a
robot is unavailable because of a fault, the returnedmessage will start with Fault_ and endwith _<name>
with the relevant flags in the middle, and each flag will be separated by the underscore character (_).

Examples

The following example clears the application fault named "faulTest2":

applicationfaultclear faulTest2

The command returns:

FaultCleared: Fault_Driving_Critical_Application faulTest2 "Fault test 2" "This is a test
of the driving application fault" true true true
Stopping
ApplicationFaultClear cleared faulTest2

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 77

applicationFaultClear Command

Related Commands

applicationFaultQuery Command on page 79

applicationFaultSet Command on page 81

faultsGet Command on page 114

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 78

applicationFaultQuery Command

applicationFaultQuery Command
Gets the list of any application faults currently triggered.

Syntax

applicationFaultQuery

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

ApplicationFaultQuery: Fault_<drivingFault or criticalFault> <name> "<short_desc>"
"<long_desc>" bool_driving bool_critical bool_applicaiton
...
End of ApplicationFaultQuery

Details

The applicationFaultQuery command returns the list of application faults that are currently triggered. For
Enterprise Manager, if a robot is unavailable because of a fault, the returnedmessage will start with Fault_
and endwith _<name> with the relevant flags in the middle, and each flag will be separated by the under-
score character (_).

This command is related to the faultsGet command. For details, see faultsGet Command on page 114

Examples

The following example shows a listing of the application faults:

applicationfaultquery

The command returns:

ApplicationFaultQuery: Fault_Driving_Critical_Application faulTest2 "Fault test 2" "This
is a test of the driving application fault" true true true
End of ApplicationFaultQuery

Related Commands

applicationFaultClear Command on page 77

applicationFaultSet Command on page 81

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 79

applicationFaultQuery Command

faultsGet Command on page 114

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 80

applicationFaultSet Command

applicationFaultSet Command
Sets an application fault.

Syntax

applicationFaultSet<name> "<short_description>" "<long_description>" <bool_driving> <bool_crit-
ical>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the fault.

short_description Enter a string that will be a brief description of the fault. If the string
contains spaces, it must be enclosed in double quotes.

long_description Enter a string that will be a detailed description of the fault. If the
string contains spaces, it must be enclosed in double quotes.

bool_driving Enter 1 if this is a driving fault; otherwise, enter 0.

bool_critical Enter 1 if this is a critical fault; otherwise, enter 0.

Responses

The command returns:

ApplicationFaultSet set <name>
Fault: Fault_<drivingFault or criticalFault> <name> "<short_desc>" "<long_desc>" bool_
driving bool_critical bool_applicaiton

Details

The applicationFaultSet command sets an application fault. All parameters are required. For Enterprise Man-
ager, if a robot is unavailable because of a fault, the returnedmessage will start with Fault_ and endwith _
<name> with the relevant flags in the middle, and each flag will be separated by the underscore character
(_).

Examples

The following example sets a fault named "faulTest":

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 81

applicationFaultSet Command

ApplicationFaultSet faulTest "Fault test" "This is a test of the driving application
fault" 1 1

The command returns:

ApplicationFaultSet set faulTest
Fault: Fault_Driving_Critical_Application faulTest "Fault test" "This is a test of the
driving application fault" true true true

Related Commands

applicationFaultClear Command on page 77

applicationFaultQuery Command on page 79

faultsGet Command on page 114

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 82

arclSendText Command

arclSendText Command
Sends the given message to all ARCL clients.

Syntax

arclSendText <string>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

To use this command, you must first enable the -enableTaskArclSendText option in SetNetGo, see Setup
Options in for details.

Parameters

The command parameters are described in the following table.

Parameters Definition

string Enter a text string that represents the message you want to send to
the ARCL clients. Quotes around the string are optional.

Responses

The command returns the following:

<string>

Details

The arclSendText command sends amessage to all ARCL clients. This is an instant task; you can use this
command to associate the ArclSendText task with goals and routes.

This is typically used to notify or activate other offboard automation processes in conjunction with the
robot's activities. ARAM sends the task's string argument to all ARCL connections.

Example
arclsendtext "Entering room, please stand clear."

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 83

clearAllObstacles Command

clearAllObstacles Command
Clears all obstacle readings.

CAUTION: DO NOT execute this commandwhile the robot is moving. Otherwise,
damage to the robot or other equipment may result.

Syntax

clearAllObstacles

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command, when successful, returns the following response:

Cleared all obstacles

Details

The clearAllObstacles command clears (removes) all obstacle readings from the robot. Therefore, itmust
not be usedwhile the robot is moving, or the robot could crash and cause damage to itself, its payload or
other equipment.

Examples

To clear the robot's obstacle readings, enter:

clearAllObstacles

The command returns:

Cleared all obstacles

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 84

configAdd Command

configAdd Command
Use the configAdd command to enter sections and related configuration parameter keywords and values to
the configuration list.

Syntax

configadd <section>

configadd<configuration> <value>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

The command parameters are described in the following table.

Parameters Definition

section Enter a text string to represent a name for the new section you
want to add to the configuration list.

configuration Enter a text string to represent a name for the new parameter you
want to add to the configuration list.

value Enter a value for the new parameter.

Responses

The command returns information about the added configuration in the following format:

Added <configuration> <value>

Details

When creating the configuration list, you must first identify which section the configuration parameter is
associated, and then provide the parameter’s keyword and new value. Configuration keywords are case-
sensitive.

Examples
configAdd Section Files
Added 'Section Files' to the config

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 85

configAdd Command

configAdd Map theNewMap.map
Added 'Map theNewMap.map' to the config

Related Commands

configParse Command on page 87

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 86

configParse Command

configParse Command
Sends the configuration parameters to ARAM, which implements the configuration changes.

Syntax

configParse

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

This command does not have any parameters.

Responses

The command returns information about the added configuration in the following format:

Will parse config
Config parsed fine
 -OR-
Config had errors parsing: <errors>

Details

The configParse command sends the configuration parameters to ARAM, which implements the con-
figuration changes.

Notice, in the following example, that the “Map changed” response was not generated by ARCL. Rather, it is
an ARAM event-warning, which is sent automatically to all attached clients. See Server Messages for
details. ARAM catches and reports errors both for configuration and system issues, for example if it is
unable to find a file or correctly load amap file.

Examples
configParse
Will parse config "Map changed"
Config parsed fine

Related Commands

configAdd Command on page 85

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 87

configParse Command

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 88

configStart Command

configStart Command
Initialize a configuration list, similar to creating a task list. The configStart command overwrites any pre-
vious list.

Syntax

configstart

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

This command does not have any parameters.

Responses

The command returns the following information:

New config starting

Details

Use the configStart command to initialize a configuration list, similar to creating a task list. The configStart
command overwrites any previous list.

When creating the configuration list, you must first identify which section the configuration parameter is
associated, and then provide the parameter’s keyword and new value. Configuration keywords are case-
sensitive.

Examples

To start a new configuration, enter the following:

configStart

The command returns:

New config starting

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 89

configStart Command

Related Commands

configAdd Command on page 85

configParse Command on page 87

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 90

connectOutgoing Command

connectOutgoing Command
Connects (or reconnects) a socket to the specified outside server.

Syntax

connectOutgoing<hostname> <port>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

The command parameters are described in the following table.

Parameters Definition

hostname Enter the name of the host (outside server) that you wish to con-
nect to. This can also be entered as the IP address of the host.

port Enter the port number that will be used for the connection.

Responses

The command returns information about the outgoing connection in the following format:

Outgoing connected to <hostname> <port>

Details

This command (re)connects a socket to the specified outside server. It is primarily used for debugging pur-
poses.

Examples

To connect to IP 192.168.0.12 with port 5353, enter:

connectOutgoing 192.168.0.12 5353

To connect to host named "ourhost" with port 5353, enter:

connectOutgoing ourhost 5353

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 91

createInfo Command

createInfo Command
Creates a piece of information.

Syntax

createInfo<infoName> <maxLen> <infoValue>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

infoName Enter a string that will represent the name for the information.

maxLen Enter the maximum character length that can be used for the
information.

infoValue Enter a string that represents the information value.

NOTE: If the number of characters in the string exceeds the
<maxLen> value, the string will be truncated to that number of
characters.

Responses

The command returns information about the new piece of information in the following format:

Created info for <infoName>

Details

This command is used to create a piece of information that resides on the connected device. Once the
information is created, it can be viewed using the getInfo command, or updated using the updateInfo com-
mand. For details, see getInfo Command on page 126 and updateInfo Command on page 293.

All information on the connected device can be listed with the getInfoList command. For details, see getIn-
foList Command on page 128.

Examples

To create a new piece of information called "myString" with a maximum length of 10 characters and an ini-
tial value of "testing", enter the following:

createinfo myString 10 testing

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 92

createInfo Command

The command returns:

Created info for myString

Related Commands

getInfo Command on page 126

getInfoList Command on page 128

updateInfo Command on page 293

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 93

customReadingAddAbsolute Command

customReadingAddAbsolute Command
Adds a sensor reading in absolute (map) coordinates.

Syntax

customReadingAddAbsolute<name> <X> <Y>

Usage Considerations

This ARCL command is only available on the robot.

There is no space between the command and the sensor name. See the examples section.

This parameter is case-sensitive.

This adds the device in absolute (map) coordinates. To add the device relative to the robot, use the cus-
tomReadingAdd command. For details, see customReadingAdd Command on page 96.

ARAM Settings

This command requires the addition of the "-customSensor <name>" argument to the Custom Argu-
ments section of the Configuration > Debug tab in the MobilePlanner software. For details, see the
Adept Motivity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the device. This para-
meter is case-sensitive.

X Enter the Xmap coordinate (in mm).

Y Enter the Ymap coordinate (in mm).

Responses

The command returns:

Added absolute reading <X> <Y>

Details

The customReadingAddAbsolute command adds a sensor reading that is at <X> <Y> millimeters in abso-
lute (map) coordinates. For example, an entry of 200 100 would be a point that is 200 mm in front of the
robot and 100 mm to the left of the robot.

This parameter is case-sensitive.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 94

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

customReadingAddAbsolute Command

Note that this command adds the device in absolute (map) coordinates. To add the sensor reading in robot-
relative coordinates, use the customReadingAdd command. For details, see customReadingAdd Command
on page 96.

Examples

NOTE: The following example assumes a custom sensor named "ARCL_CustomSensor" was previously
added to the system. For details, see the ARAM Settings section.

To add a sensor reading at absolute (map) coordinates X: -2532 Y: 5471, enter the following:

customReadingAddAbsoluteARCL_CustomSensor -2532 5471

The command returns:

Added absolute reading -2532 5471

Related Commands

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

Adept ARCL Reference Guide, Updated: 9:26:49 AM

Page 95

customReadingAdd Command

customReadingAdd Command
Adds a sensor reading in robot-relative coordinates.

Syntax

customReadingAdd<name> <X> <Y>

Usage Considerations

This ARCL command is only available on the robot.

There is no space between the command and the sensor name. See the examples section.

This parameter is case-sensitive.

This adds the sensor reading in relative (to the robot base) coordinates. To add the device in absolute
(map) coordinates, use the customReadingAddAbsolute command. For details, see cus-
tomReadingAddAbsolute Command on page 94.

ARAM Settings

This command requires the addition of the "-customSensor <name>" argument to the Custom Argu-
ments section of the Configuration > Debug tab in the MobilePlanner software. For details, see the
Adept Motivity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the device. This para-
meter is case-sensitive.

X Enter the X coordinate (in mm) relative to the robot base.

Y Enter the Y coordinate (in mm) relative to the robot base.

Responses

The command returns:

Added reading <X> <Y>

Details

The customReadingAdd command adds a sensor reading that is at <X> <Y> millimeters in robot-relative
coordinates (where +X is in front of the robot, +Y is to the left of the robot). For example, an entry of 200
100 would be a point that is 200 mm in front of the robot and 100 mm to the left of the robot.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 96

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

customReadingAdd Command

This parameter is case-sensitive.

Note that this command adds the device in robot-relative (to the robot base) coordinates. To add the sensor
reading in absolute (map) coordinates, use the customReadingAddAbsolute command. For details, see cus-
tomReadingAddAbsolute Command on page 94.

Examples

NOTE: The following example assumes a custom sensor named "ARCL_CustomSensor" was previously
added to the system. For details, see the ARAM Settings section.

To add a sensor reading at robot-relative coordinates X: 100 Y: 0, enter the following:

customReadingAddARCL_CustomSensor 100 0

The command returns:

Added reading 100 0

Related Commands

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 97

customReadingsClear Command

customReadingsClear Command
Clears all the named sensor readings from ARAM.

Syntax

customReadingsClear<name>

Usage Considerations

This ARCL command is only available on the robot.

There is no space between the command and the sensor name. See the examples section.

ARAM Settings

This command requires the addition of the "-customSensor <name>" argument to the Custom Argu-
ments section of the Configuration > Debug tab in the MobilePlanner software. For details, see the
Adept Motivity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the device.

Responses

The command returns:

Cleared readings

Details

The customReadingClear command clears all custom senor readings that were added using the cus-
tomReadingAdd command or the customReadingAddAbsolute command. For details on these commands,
use the links in the Related Commands section.

Examples

To clear the custom sensor readings, enter the following:

customReadingsClearARCL_CustomSensor

The command returns:

Cleared readings

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 98

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

customReadingsClear Command

Related Commands

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 99

distanceBetween Command

distanceBetween Command
Finds the path distance between two given goals.

Syntax

distancebetween <FromGoal> <ToGoal>

Usage Considerations

This ARCL command is only available on the robot.

This command should only be usedwhen the robot is idle and stationary.

Parameters

The command parameters are described in the following table.

Parameter Definition

FromGoal Enter the name of the first goal.

ToGoal Enter the name of the second goal.

Responses

The command returns:

Will find distance between "<FromGoal>" and "<ToGoal>"
DistanceBetween: <mm> "<FromGoal>" "<ToGoal>"

Details

The distanceBetween command plans a path from goal to goal and reports that path distance. It assumes,
of course, there are no unforeseen obstacles. This command is processing-intensive. Therefore, it should
be used only when the robot is idle and stationary. Additionally, be sure to update the distance after any
changes are made to the map.

To find the distance from the current robot position to a specified goal, use the distanceFromHere com-
mand. For details, see distanceFromHere Command on page 102.

Examples

The following example finds the distance between goals "g_6" and "g_7".

distancebetween g_6 g_7

The command returns:

Will find distance between "g_6" and "g_7"
DistanceBetween: 13183 "g_6" "g_7"

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 100

distanceBetween Command

Related Commandss

distanceFromHere Command on page 102

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 101

distanceFromHere Command

distanceFromHere Command
Finds the path distance from the current robot position to a given goal.

Syntax

distanceFromHere <ToGoal>

Usage Considerations

This ARCL command is only available on the robot.

This command should only be usedwhen the robot is idle and stationary.

Parameters

The command parameters are described in the following table.

Parameter Definition

ToGoal Enter the name of the goal.

Responses

The command returns:

Will find distance from here to <ToGoal>.
DistanceBetween: <mm> "<to goal>"

Details

The distanceFromHere command plans a path from the current robot position to the specified goal and
reports that path distance. It assumes, of course, there are no unforeseen obstacles. This command is pro-
cessing-intensive. Therefore, it should be used only when the robot is idle and stationary. Additionally, be
sure to update the distance after any changes are made to the map.

To find the distance between two specified goals, use the distanceBetween command. For details, see dis-
tanceBetween Command on page 100.

Examples

The following example finds the distance from the current robot position to goal "g_5".

distancefromhere g_5

The command returns:

Will find distance from here to "g_5"
DistanceFromHere: 9960 "g_5"

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 102

distanceFromHere Command

Related Commands

distanceBetween Command on page 100

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 103

dock Command

dock Command
Sends the robot to the dock.

Syntax

dock

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

DockingState: <dock_state> ForcedState: <forced_state> ChargeState: <charge_state>

Details

The dock command sends the robot to the dock so it can recharge.

When the robot is fully-charged, it will automatically undock from the dock/recharge station.

You can undock the robot with the undock command, or by using one of the "goto..." commands. For
details on these commands, use the links in the Related Commands section.

Examples

The following example docks the robot:

dock

The command returns:

DockingState: Undocked ForcedState: Unforced ChargeState: Unknowable
DockingState: Docking ForcedState: Unforced ChargeState: Unknowable

Related Commands

goto Command on page 135

gotoPoint Command on page 137

gotoRouteGoal Command on page 139

undock Command on page 291

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 104

doTask Command

doTask Command
Performs a single task.

Syntax

doTask <task> <argument>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

task Enter the name of the task you want the mobile robot to perform,
such as a goto task.

argument Enter the appropriate arguments for the task you want the robot to
perform. Using the goto task example, you would need to enter a
goal name, such as goto goal_1.

Enclose any string arguments in double quotes.

Responses

The command returns:

Will do task <task> <argument>
Doing task <task> <argument>
...
Completed doing task <task> <argument>

Details

The doTask command tells the robot to perform a single task. The task is carried out immediately. This task
is similar to the doTaskInstant command, which performs "instant tasks" immediately. For details, see
doTaskInstant Command on page 107.

Examples

The following example tells the robot to go to goal g_5:

dotask goto g_5

The command returns:

Will do task goto g_5

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 105

doTask Command

Doing task goto g_5
Completed doing task goto g_5

The following example tells the robot to wait for 10 seconds:

doTask wait 10

The command returns:

Will do task wait 10
Doing task wait 10
WaitState: Waiting 10 seconds with status "Waiting"
WaitState: Waiting completed
Completed doing task wait 10

Related Commands

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 106

doTaskInstant Command

doTaskInstant Command
Performs an instant task.

Syntax

doTaskInstant <task> <argument>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

task Enter the name of the instant task you want the mobile robot to per-
form.

argument Enter the appropriate arguments for the instant task you want the
robot to perform. Enclose strings in double quotes.

Responses

The command returns:

Completed doing instant task <task> <argument>

Details

The doTaskInstant command tells the mobile robot to immediately perform the specified task. You can only
use "instant tasks" with the doTaskInstant command. This command is similar to the doTask command.
For details, see doTask Command on page 105.

The following are examples of two instant tasks that are available for use with ARCL.

l movementParametersTemp - Sets the movement parameters temporarily (this route and/or this
mode).

l pathPlanningSettingsTemp - Sets the path-planning parameters temporarily (this route and/or this
mode).

The list of available instant tasks can be viewed using the MobilePlanner software. For details, see the Adept
Motivity User's Guide.

Related Commands

doTask Command on page 105

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 107

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

doTaskInstant Command

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 108

echo Command

echo Command
Enables/disables echo, or returns the current echo state.

Syntax

echo [state]

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

The command parameters are described in the following table.

Parameter Definition

state Optional. Enter "on" to enable echo; enter "off" to disable echo. If
omitted, the command returns the current echo state.

Responses

The command returns:

Echo is <state>

-Or-

Echo turned <state>

Examples

The following command returns the current echo state:

echo
Echo is off.

The following command turns echo on:

echo on
Echo turned on.

The following command turns echo off:

echo off
Echo turned off.

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 109

enableMotors Command

enableMotors Command
Enables the robot motors, if the robot was not E-stopped.

Syntax

enableMotors

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Motors are enabled

However, if an E-stop was pressed on the robot, the followingmessage is displayed.

Estop pressed cannot enable motors

Examples

The following command enables the robot motors:

enablemotors

The command returns:

Motors are enabled

Related Commands

queryMotors Command on page 207

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 110

etaRequest Command

etaRequest Command

Syntax

etaRequest

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

eta <seconds> <distance_mm>

Details

The etaRequest command returns the estimated time (in seconds) and distance (in mm) to reach the goal.
If the robot is not traveling to a goal, the command returns 0 for both values.

Examples

To get the estimated time (and distance) before the robot reaches the goal, enter:

etarequest

The command returns:

eta 17 25449

Related Commands

status Command on page 276

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 111

executeMacro Command

executeMacro Command
Executes the specifiedmacro.

Syntax

executeMacro <macro_name >

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

macro_name Enter the name of the macro you want the mobile robot to per-
form.

Responses

The command returns:

Executing macro <macro_name>
WaitState: <wait_status>
...
Completed macro <macro_name>

Details

Use this command to execute a specifiedmacro found on the map. You can use the MobilePlanner soft-
ware to create macros. For details, see the Adept Motivity User's Guide.

Use the getMacros command to display a list of the macros available in ARCL. For details, see getMacros
Command on page 130.

Example

The following example executes the macro named "Adept Greeting".

executemacro Adept Greeting

The command returns:

Executing macro Adept Greeting
WaitState: Waiting 1 seconds with status "Waiting"
WaitState: Waiting completed
Completed macro Adept Greeting

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 112

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

executeMacro Command

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 113

faultsGet Command

faultsGet Command
Gets the list of any faults currently triggered.

Syntax

faultsGet

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

FaultList: Fault_<drivingFault or criticalFault> <name> "<short_desc>" "<long_desc>"
bool_driving bool_critical bool_applicaiton
...
End of FaultList

For Enterprise Manager, if a robot is unavailable because of a fault, the returnedmessage will start with
Fault_ and endwith _<name> with the relevant flags in the middle, and each flag will be separated by the
underscore character (_).

Details

The faultsGet command returns the list of faults that are currently triggered—this includes system-gen-
eratd faults and application-generated faults. Application faults can be set using the applicationFaultSet
command, cleared using the applicationFaultClear command, and queried using the applicationFaultQuery
command. For details on these commands, see the related commands section.

Examples

The following example shows a listing of the faults:

faultsget

The command returns:

FaultList: Fault_Driving_Application faultTest "Fault test" "This is a test of the
application fault" true false true
FaultList: Fault_Critical_Application faulTest2 "Fault test 2" "This is a test of the
application fault two" false true true
End of FaultList

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 114

faultsGet Command

Related Commands

applicationFaultClear Command on page 77

applicationFaultQuery Command on page 79

applicationFaultSet Command on page 81

log Command on page 153

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 115

follow Command

follow Command
Follow a person walking ahead of the robot.

Syntax

follow

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Following

Details

The follow command engages the leg-following behavior for no-hands operation. When this command is
executed, the robot will follow (at a safe distance) behind a person who is walking ahead of it.

Examples

To engage the leg-following behavior, enter the following:

follow

The command returns:

Following

Related Commands

goto Command on page 135

gotoPoint Command on page 137

gotoRouteGoal Command on page 139

patrol Command on page 177

patrolOnce Command on page 179

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 116

getConfigSectionInfo Command

getConfigSectionInfo Command
Displays details about the configuration parameters in a specified section.

Syntax

getConfigSectionInfo <section>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

The getConfigSectionInfo arguments are described in the table below.

Parameters Definition

section Enter the name of the section from which you want to see a list of
configuration parameters. This is a text string; it is case-sensitive.
The stringmust not be enclosed in double quotes.

Responses

When using the getConfigSectionInfo command, ARCL displays the following information:

getconfigsectioninfo "<type>" "<type>"

Then for each parameter in the section, ARCL displays the following information:

GetConfigSectionInfo: <type> <name> <priority> <min> <max> "<description>" "<display
hint>"
...
EndOfGetConfigSectionInfo

Details

The getConfigSectionInfo command displays details about the configuration parameters in a specified sec-
tion. See Examples for details.

Note that a valid section namemust be entered, and the section name is case-sensitive.

Use the getConfigSectionList Command to display a list of available sections. For details, see getCon-
figSectionList Command on page 119.

Adept ARCL Reference Guide, Updated: 9:26:50 AM

Page 117

getConfigSectionInfo Command

Examples

The following example displays details about the configuration parameters in the section"Outgoing
ARCL Commands".

getconfigsectioninfo Outgoing ARCL Commands
GetConfigSectionInfo: "" "SEPARATE_SECTION"
GetConfigSectionParamInfo: Separator
GetConfigSectionParamInfo: Bool LogOutgoingCommands Advanced None None "True
to log outgoing commands from below, false not to" "(null)"
GetConfigSectionParamInfo: Separator
GetConfigSectionParamInfo: String OutgoingCommands1 Advanced None None "ARCL
command(s) to call on the outgoing socket" "(null)"
GetConfigSectionParamInfo: Double OutgoingCommands1Seconds Advanced 0 inf "Call
the command every this many seconds (note it's a double so you can do .5 for half a
second)
0 disables (seconds)" "(null)"

Related Commands

configAdd Command on page 85

configParse Command on page 87

configStart Command on page 89

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

configAdd Command on page 85

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 118

getConfigSectionList Command

getConfigSectionList Command
Displays the list of sections enabled in the ARAM configuration parameters.

Syntax

getConfigSectionList

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

This command does not have any parameters.

Value

Details

The getConfigSectionList displays the list of sections enabled in the ARAM configuration parameters. See
Examples for a sample list.

This commandwould be used in conjunction with getConfigSectionInfo, which returns information about a
specified section. For details, see getConfigSectionInfo Command on page 117.

Examples

The following example returns a list of sections that are enabled in the ARAM configuration parameters.

getconfigsectionlist
GetConfigSectionList: Log Config
GetConfigSectionList: Connection timeouts
GetConfigSectionList: ARCL server setup
GetConfigSectionList: Outgoing ARCL connection setup
GetConfigSectionList: Outgoing ARCL commands
GetConfigSectionList: Files
GetConfigSectionList: Path Planning Settings
GetConfigSectionList: Debug log
GetConfigSectionList: lms2xx_1 Settings
GetConfigSectionList: Localization settings
GetConfigSectionList: Instant Macro Button Settings
GetConfigSectionList: Periodic Macros
GetConfigSectionList: Driving problem response

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 119

getConfigSectionList Command

GetConfigSectionList: bumpers Settings
GetConfigSectionList: Teleop settings
GetConfigSectionList: Robot config
GetConfigSectionList: Destination Drawing
GetConfigSectionList: Patrol
GetConfigSectionList: Docking
GetConfigSectionList: Move settings
GetConfigSectionList: Follow (laser) settings
GetConfigSectionList: A/V Config
GetConfigSectionList: Speech Synthesis
GetConfigSectionList: MultiRobot
GetConfigSectionList: Data Log Settings
EndOfGetConfigSectionList

Related Commands

configAdd Command on page 85

configParse Command on page 87

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionValues Command on page 121

configAdd Command on page 85

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 120

getConfigSectionValues Command

getConfigSectionValues Command
Displays the current parameter values for the specified section.

Syntax

getConfigSectionValues <section>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

The command parameters are described in the following table.

Parameters Definition

section Enter the name of the section from which you want to see a list of
parameter values. This is a text string; it is case-sensitive. The
stringmust not be enclosed in double quotes.

Responses

The command returns:

GetConfigSectionValue: <value>
...
EndOfGetConfigSectionValues

Details

The getConfigSectionValues command displays a list of the specified section's current parameter values.
See Examples for a sample listing.

It is typically usedwith the getConfigSectionList command, which lists the available sections, and the
getConfigSectionInfo command, which displays the information for a specified section.

Examples

The following example displays the parameter values for the section "Outgoing ARCL Commands".

getconfigsectionvalues Outgoing ARCL Commands
GetConfigSectionValue: LogOutgoingCommands true

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 121

getConfigSectionValues Command

GetConfigSectionValue: OutgoingCommands1
GetConfigSectionValue: OutgoingCommands1Seconds 0
GetConfigSectionValue: OutgoingCommands2
GetConfigSectionValue: OutgoingCommands2Seconds 0
GetConfigSectionValue: OutgoingCommands3
GetConfigSectionValue: OutgoingCommands3Seconds 0
GetConfigSectionValue: OutgoingCommands4
GetConfigSectionValue: OutgoingCommands4Seconds 0
GetConfigSectionValue: OutgoingCommands5
GetConfigSectionValue: OutgoingCommands5Seconds 0
EndOfGetConfigSectionValues

Related Commands

configAdd Command on page 85

configParse Command on page 87

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

configAdd Command on page 85

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 122

getDateTime Command

getDateTime Command
Returns the system date and time.

Syntax

getDateTime

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Parameters

This command does not have any parameters.

Examples

To view the current system date and time, enter:

getdatetime

The command returns:

DateTime: 05/03/2012 04:48:55

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 123

getGoals Command

getGoals Command
Returns a list of goal names found in the current map.

Syntax

getGoals

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

This command does not have any parameters.

Responses

The command returns:

Goal: <name>
...
Goal: <name>
End of goals

Examples

To get a list of the goal names in the current map, enter the following:

getgoals

The command returns:

Goal: w200
Goal: Y
Goal: X
Goal: First_Goal
Goal: goal space
Goal: T
Goal: w180
Goal: First
Goal: V
Goal: w20
Goal: z
End of goals

Related Commands

getGoals Command on page 124

getRoutes Command on page 134

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 124

getGoals Command

goto Command on page 135

gotoRouteGoal Command on page 139

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 125

getInfo Command

getInfo Command
Returns the string associated with the information name.

Syntax

getInfo<infoName>

Usage Considerations

This ARCL command is only available on the robot.

You can view the value of any information on the connected device—it is not restricted to the information
created with the createInfo command. For details, see createInfo Command on page 92.

Parameters

The command parameters are described in the following table.

Parameter Definition

<infoName> Enter the name of the information you want to view.

Responses

The command returns:

Info: <label> <string_value>

Details

The getInfo command returns the information associated with the specified information name. You can
use the command to view the value of any information on the connected device. To see a list of all inform-
ation names on the device, use the getInfoList command. For details, see getInfoList Command on page
128.

Examples

To view the information associated with the information name "mystring", enter the following:

getinfo mystring

The command returns:

Info: Flags 400

Related Commands

createInfo Command on page 92

getInfoList Command on page 128

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 126

getInfo Command

updateInfo Command on page 293

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 127

getInfoList Command

getInfoList Command
Returns the list of information names.

Syntax

getInfoList

Usage Considerations

This ARCL command is only available on the robot.

This command lists all information names on the connected device—it is not restricted to the names cre-
ated with the createInfo command. For details, see createInfo Command on page 92.

Parameters

This command does not have any parameters.

Responses

The command returns:

InfoList: <info>
...
InfoList: <info>
End of info list

Details

The getInfoList command is used to list all the information names on the connected device. The list
includes the system information names and any user-created information names that were addedwith
the createInfo command. For details, see createInfo Command on page 92.

Examples

To view the list of information names, enter the following:

getinfolist

The command returns:

InfoList: Odometer(KM)
InfoList: LaserUncertainty
InfoList: LaserScore
InfoList: LaserLock
InfoList: LaserNumSamples
InfoList: Flags
InfoList: Fault flags
InfoList: MPacs
InfoList: lms2xx_1 Pacs
InfoList: CPU Use
InfoList: SBC Uptime

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 128

getInfoList Command

InfoList: ARAM Uptime
InfoList: Idle
InfoList: Queue ID
InfoList: Queue Job ID
InfoList: DebugLogState
InfoList: DebugLogSeconds
InfoList: mystring
End of info list

Related Commands

createInfo Command on page 92

getInfo Command on page 126

updateInfo Command on page 293

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 129

getMacros Command

getMacros Command
Displays a list of macros found in the current map.

Syntax

getmacros

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

<macro_name>
...
<macro_name>
End of macros

Details

The getMacros command provides a list of the macro names found in the current map.

Use this commandwith the executeMacro command. For details, see executeMacro Command on page
112.

Examples
getmacros

The command returns:

Macro_1
Macro_2
Macro_3
End of macros

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 130

getMacros Command

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 131

getPayload Command

getPayload Command
Gets the payload name.

Syntax

getPayload

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

payload <payload>

Details

The getPayload command gets the name of the robot payload. To set the payload name, use the setPay-
load command. For details, see setPayload Command on page 272.

Examples

The following example requests the payload name:

getpayload

The command returns:

payload This has widgets

Related Commands

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 132

getPrecedence Command

getPrecedence Command
Displays the precedence information for the robot, which is used in a multi-robot encounter. Lower values
take higher precedence.

Syntax

getprecedence

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

getPrecedence: <value>

Details

The getPrecedence command is used to display the precedence information for the robot. The precedence
value is used in a multi-robot encounter. The robot that has the lowest value will get highest precedence,
the robot with the next lowest value will get the next highest precedence, and so on. The precedence value
is set using the setPrecedence command. For details, see setPrecedence Command on page 274.

Examples

To get the precedence information for the robot, enter the following:

getprecedence

The command returns:

getPrecedence: 0

Related Commands

setPrecedence Command on page 274

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 133

getRoutes Command

getRoutes Command
Displays the list of route names found on the current map.

Syntax

getRoutes

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Routes
Route: <routeName>
...
Route: <routeName>
End of routes

Examples

To show the list of routes on the current map, enter the following:

getroutes

The command returns:

Routes
Route: tv
Route: xyz
Route: yzx
Route: zy
End of routes

Related Commands

getGoals Command on page 124

gotoRouteGoal Command on page 139

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 134

goto Command

goto Command
Sends the robot to the named goal and, when it arrives, turns the robot to the specified heading, if spe-
cified.

Syntax

goto<goal_name> [heading]

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The goto arguments are described in the table below.

Parameter Definition

goal_name Enter the name of the goal you want the robot to drive to.

heading Enter an optional heading in degrees.

Responses

The command returns:

Going to <goal_name> with heading [heading]
Arrived at <goal_name> with heading [heading]

Details

The goto command sends the robot to the named goal and, when it arrives, turns the robot to the specified
heading if it was specified.

Examples

To have the robot go to goal "g_15", enter the following:

goto g_15

The command returns:

Going to g_15
Arrived at g_15

To have the robot go to goal "X" with a heading of "10", enter the following:

goto X 10

The command returns:

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 135

goto Command

Going to X with heading 10
Arrived at X with heading 10

Related Commands

gotoPoint Command on page 137

gotoRouteGoal Command on page 139

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 136

gotoPoint Command

gotoPoint Command
Sends robot to the specified point (optional heading, on arrival).

Syntax

gotoPoint<X> <Y> <heading: optional>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

X Specifies the distance of travel in the robot X direction.

Y Specifies the distance of travel in the robot Y direction.

heading: optional Specifies an optional heading in degrees.

Responses

The command returns:

Going to point <x> <y> <heading:optional>
Arrived at point <x> <y> <heading:optional>

Details

The gotoPoint command sends the robot to the specified point in the map and, upon arrival, turn to the
given heading, if it was specified.

Examples

The following is a gotoPoint commandwith a heading:

gotopoint 14000 25000 180
Going to point 14000 25000 180
Arrived at point 14000 25000 180

The following is a gotoPoint commandwithout a heading:

gotopoint 13000 26000
Going to point 13000 26000
Arrived at point 13000 26000

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 137

gotoPoint Command

Related Commands

goto Command on page 135

gotoRouteGoal Command on page 139

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 138

gotoRouteGoal Command

gotoRouteGoal Command
Sends robot to the specified goal within the specified route (optional route index can be asserted).

Syntax

gotoRouteGoal<route_name> <goal_name> [index]

Usage Considerations

This ARCL command is only available on the robot.

The optional index parameter is typically reserved for specific applications and is not required under normal
circumstances.

Parameters

The command parameters are described in the following table.

Parameter Definition

route_name Enter the name of the route where the robot will find the goal.

goal_name Enter the name of the goal you want the robot to navigate to.

index Enter an optional index. This is typically reserved for specific applic-
ations and is not required under normal circumstances.

Responses

The command returns:

Going to <goal_name>
Arrived at <goal_name>

Details

Sends robot to specified goal within the specified goal. Optionally, the command also asserts a route index if
one has been specified. However, this is typically reserved for specific applications and is not required under
normal circumstances.

Examples

To send the robot to goal "g_17" in the route named "test", enter the following:

gotoroutegoal test g_17

The command returns:

Going to g_17
Arrived at g_17

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 139

gotoRouteGoal Command

Related Commands

goto Command on page 135

gotoPoint Command on page 137

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 140

help Command

help Command
Provides a list and brief description of available ARCL commands.

Syntax

help

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

This command does not have any parameters.

Details

The help command provides a list and brief description of the available ARCL commands on the connected
server or robot. The list shown depends on the current configuration of your server or robot, therefore, it
may not show the entire library of commands.

Examples

To view the command list and descriptions, enter the following:

help

The command returns:

NOTE: The list of available commands depends on your system configuration.

Commands:
addCustomCommand Adds a custom command that sends a message out ARCL when

called
addCustomStringCommand Adds a custom string command that sends a message out ARCL when

called
arclSendText Sends the given message to all ARCL clients

connectOutgoing (re)connects a socket to the given outside server
echo with no args gets echo, with args sets echo

…
queueShowRobot shows the status of all the robots [qsr]

quit closes this connection to the server
End of commands

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 141

inputList Command

inputList Command
Lists the named digital inputs.

Syntax

inputList

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Input: <name>
...
End of InputList

Details

The inputList command returns the list of digital inputs. To get the status of a particular digital input, use
the inputQuery command. For details, see inputQuery Command on page 144.

Examples

To get the list of digital inputs, enter the following:

inputlist

The command returns:

InputList: out_one
InputList: out_two
End of InputList

Related Commands

inputQuery Command on page 144

outputList Command on page 171

outputOff Command on page 173

outputOn Command on page 174

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 142

inputList Command

outputQuery Command on page 175

Adept ARCL Reference Guide, Updated: 9:26:51 AM

Page 143

inputQuery Command

inputQuery Command
Queries the state of a named input.

Syntax

inputQuery <name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the input to query.

Responses

The command returns:

Input: <name> <status>

Details

The outputQuery command returns the status of the named digital input. To get a list of the digital inputs,
use the inputList command. For details, see inputList Command on page 142.

Examples

To get the status of digital input named "in_one", enter the following:

Inputquery in_one

The command returns:

Input: in_one off

Related Commands

inputList Command on page 142

outputList Command on page 171

outputOff Command on page 173

outputOn Command on page 174

outputQuery Command on page 175

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 144

listAdd Command

listAdd Command
Adds a task to the task list.

Syntax

listAdd <task> <argument>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The listAdd arguments are described in the table below.

Parameters Definition

task Enter the name of the task you want to add to the task list, such as
a goto task.

argument Enter the appropriate arguments for the task you want the robot to
perform. Using the goto task example, you would need to enter a
goal name, such as goto goal_1. Strings must be enclosed in double
quotes.

Responses

The command returns:

Added task <task> <argument>
...

Details

ARCL allows you to create a task list, add tasks to the list, and then execute the task list. In doing so, you
can make use of the tasks that are available in MobilePlanner for building routes andmacros.

You must first initialize a task list with the listStart command. This overwrites any list that has already star-
ted but has not been executed. For details, see listStart Command on page 149.

Use the listAdd commandwith a task name as an argument, followed by any other task argument. This
puts the task into the current list.

When the list is complete, use listExecute to perform the series of tasks in the order they were entered.
The list can be executed only once. For details, see listExecute Command on page 147.

Examples

As shown below, the list commands allow you to assemble and execute a sequence of tasks. In the fol-
lowing example, the robot travels to the goal Lobby andwhen it gets there, says its name and then asks for

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 145

listAdd Command

a name:

liststart
List being cleared
Making new list

listadd goto Lobby
Added task goto Lobby
listadd say "My name is PatrolBot"
Added task say "My name is PatrolBot"
listadd say "What is your name?"
Added task say "What is your name?"

listexecute
Executing list
Successfully finished task list

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 146

listExecute Command

listExecute Command
Use listExecute to perform the series of tasks, with the order of first in, first out; the list can be executed
only once.

Syntax

listExecute

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Executing list
Successfully finished task list

Details

ARCL allows you to create a task list, add tasks to the list, and then execute the task list. In doing so, you
can make use of the tasks that are available in MobilePlanner for building routes andmacros.

You must first initialize a task list with the listStart command. This overwrites any list that has already star-
ted but has not been executed. For details, see listStart Command on page 149.

Use the listAdd commandwith a task name as an argument, followed by any other task argument. This
puts the task into the current list. For details, see listAdd Command on page 145.

When the list is complete, use listExecute to perform the series of tasks in the order they were entered.
The list can be executed only once.

Examples

As shown below, the list commands allow you to assemble and execute a sequence of tasks. In the fol-
lowing example, the robot travels to the goal Lobby andwhen it gets there, says its name and then asks for
a name:

liststart
List being cleared
Making new list

listadd goto Lobby
Added task goto Lobby
listadd say "My name is PatrolBot"
Added task say "My name is PatrolBot"
listadd say "What is your name?"

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 147

listExecute Command

Added task say "What is your name?"

listexecute
Executing list
Successfully finished task list

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 148

listStart Command

listStart Command
Initializes a new task list for the robot to perform.

Syntax

listStart

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

List being cleared
Making new list

Details

ARCL allows you to create a task list, add tasks to the list, and then execute the task list. In doing so, you
can make use of the tasks that are available in MobilePlanner for building routes andmacros.

You must first initialize a task list with the listStart command. This overwrites any list that has already star-
ted but has not been executed.

Use the listAdd commandwith a task name as an argument, followed by any other task argument. This
puts the task into the current list. For details, see listAdd Command on page 145.

When the list is complete, use listExecute to perform the series of tasks in the order they were entered.
The list can be executed only once. For details, see listExecute Command on page 147.

Examples

As shown below, the list commands allow you to assemble and execute a sequence of tasks. In the fol-
lowing example, the robot travels to the goal Lobby andwhen it gets there, says its name and then asks for
a name:

liststart
List being cleared
Making new list

listadd goto Lobby
Added task goto Lobby
listadd say "My name is PatrolBot"
Added task say "My name is PatrolBot"
listadd say "What is your name?"

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 149

listStart Command

Added task say "What is your name?"

listexecute
Executing list
Successfully finished task list

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 150

localizeToPoint Command

localizeToPoint Command
Localizes to a given point, optionally with spread.

Syntax

localizeToPoint<X> <Y> <T> [xySpread] [thSpread]

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

X Enter an integer (in mm) that represents the X coordinate where
you want the robot to localize.

Y Enter an integer (in mm) that represents the Y coordinate where
you want the robot to localize.

T Enter an integer that represents the Theta value in degrees.

xySpread Enter an optional integer (mm) that represents the XY spread.

thSpread Enter an optional integer (degrees) that represents the Theta
spread.

Responses

The command returns:

Localized to point

Details

Localizes to a given point, optionally with XY and Theta spread.

Examples

The following example localizes the robot to point XYT point 100 100 0:

localizetopoint 100 100 0
Localized to point

The following example localizes the robot to the previous XYT point, but it includes an XY spread of 10 mm
and a Theta spread of 2 degrees:

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 151

localizeToPoint Command

localizetopoint 100 100 0 10 2
Localized to point

Related Commands

gotoPoint Command on page 137

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 152

log Command

log Command
Logs the message to the normal log file.

Syntax

log<message> [level]

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

The command parameters are described in the following table.

Parameter Definition

message Enter the string the will be the logmessage. If it contains any
spaces, the stringmust be enclosed in double quotes.

level Enter the optional level for the message: Terse, Normal, or Verbose:

Terse = Used for critical errors
Normal = Used for standard error information
Verbose = Used for routine information that typically doesn't need
to be seen.

If no level is specified, it defaults to the "Normal" level.

Responses

The command returns:

Logging '<message>' with level [level]

Details

The log command is used to add user-createdmessages to the system log file. There are three levels that
can be optionally specified for the message; if none is specified, the default level of "Normal" is used.

Examples

The following example logs the message "This is a test" with no level specified:

log "This is a test" terse
Logging 'This is a test' with level Normal

The following example logs the message "This is a test" with a level of "Terse":

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 153

log Command

log "This is a test" terse
Logging 'This is a test' with level Terse

Related Commands

faultsGet Command on page 114

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 154

mapObjectInfo Command

mapObjectInfo Command
Gets the information about a namedmap object.

Syntax

mapObjectInfo <name>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name of the map object.

Responses

The command returns:

MapObjectInfo: "<name>" <type> "<description>"
MapObjectInfoParams: "<name>" <params>
End of MapObjectInfo

Note that if there are no parameters the MapObjectInfoParams will not be shown. The <params> will show
all the parameters that are present; strings will be in quotes (if they contain spaces)—those should be
looked for and removed. The <description> is what the user enters in the MobilePlanner software.

Details

The mapObjectInfo command displays information about a specific map object. See Examples for details.

There are four related commands that are used to get information about map objects:mapObjectTypeList,
mapObjectTypeInfo, mapObjectList, andmapObjectInfo. These can be used in one of two ways:

l Exploratory - by getting broad/general information and "drilling down" to the desired specific inform-
ation. For this method, you would:

l Use mapObjectTypeList to show the map object <type>s.

l Use mapObjectTypeInfo <type> to see if it has parameters or other information.

l Use mapObjectList <type> to get the <name> of the map objects of that type.

l Use mapObjectInfo <name> to get information about each map object (this is mostly for
those that have parameters).

l Direct - by going after information on a specific map object. For this method, you would:

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 155

mapObjectInfo Command

l Use mapObjectInfo <name> to find out its <type> and its parameters.

l Use mapObjectTypeInfo <type> to see what parameters it has andwhat they mean. This
step isn't needed if you already know what the parameters mean. However, it can be useful
for verifying ordering and other details.

For more details on these commands, see the links in the Related Commands section.

Examples

The following example returns information about the map object named "Pre-
ferredDirectionRightSingle1":

mapobjectinfo PreferredDirectionRightSingle1

The command returns:

MapObjectInfo: "PreferredDirectionRightSingle1" DriveOnRightSector ""
MapObjectInfoParams: "PreferredDirectionRightSingle1" true 300
End of MapObjectInfo

Related Commands

mapObjectList Command on page 157

mapObjectTypeInfo Command on page 159

mapObjectTypeList Command on page 161

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 156

mapObjectList Command

mapObjectList Command
Gets the names of map objects of a given type.

Syntax

mapObjectList <type>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

The command parameters are described in the following table.

Parameters Definition

type Enter a string that represents the type of map objects you want to
list. The stringmust not contain spaces. The stringmust not be
enclosed in double quotes.

This is a text string; it is case-sensitive.

Responses

The command returns:

MapObjectList: "<name>" <type>
MapObjectList: "<name>" <type>
End of MapObjectList

Details

The mapObjectList command displays a list (by name) of the map objects of the specified type. See
Examples for details.

There are four related commands that are used to get information about map objects:mapObjectTypeList,
mapObjectTypeInfo, mapObjectList, andmapObjectInfo. These can be used in one of two ways:

l Exploratory - by getting broad/general information and "drilling down" to the desired specific inform-
ation. For this method, you would:

l Use mapObjectTypeList to show the map object <type>s.

l Use mapObjectTypeInfo <type> to see if it has parameters or other information.

l Use mapObjectList <type> to get the <name> of the map objects of that type.

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 157

mapObjectList Command

l Use mapObjectInfo <name> to get information about each map object (this is mostly for
those that have parameters).

l Direct - by going after information on a specific map object. For this method, you would:

l Use mapObjectInfo <name> to find out its <type> and its parameters.

l Use mapObjectTypeInfo <type> to see what parameters it has andwhat they mean. This
step isn't needed if you already know what the parameters mean. However, it can be useful
for verifying ordering and other details.

For more details on these commands, see the links in the Related Commands section.

Examples

The following example lists the names of the "DriveOnRightSector" object types in the map:

mapobjectlist driveonrightsector

The command returns:

MapObjectList: "PreferredDirectionRightSingle1" DriveOnRightSector
MapObjectList: "PreferredDirectionRightSingle2" DriveOnRightSector
End of MapObjectList

Related Commands

mapObjectInfo Command on page 155

mapObjectTypeInfo Command on page 159

mapObjectTypeList Command on page 161

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 158

mapObjectTypeInfo Command

mapObjectTypeInfo Command
Gets detailed information about a particular type of map object.

Syntax

mapObjectTypeInfo <type>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

The command parameters are described in the following table.

Parameters Definition

type Enter a string that represents the type of objects. For example,
SlowSector. The stringmust not contain spaces. The stringmust
not be enclosed in double quotes.

Responses

The command returns:

MapObjectTypeList: <type> <metaType> "<label>" "<desc>"
MapObjectTypeInfoArgument: <argName> <argType> <argImportance> "<argDescription>"
MapObjectTypeInfoArgument: <argName> <argType> <argImportance> "<argDescription>"
MapObjectTypeInfoArgument: <argName> <argType> <argImportance> "<argDescription>"
End of MapObjectTypeInfo

Details

The mapObjectTypeInfo command displays detailed information about a specified type of map object. See
Examples for details.

There are four related commands that are used to get information about map objects:mapObjectTypeList,
mapObjectTypeInfo, mapObjectList, andmapObjectInfo. These can be used in one of two ways:

l Exploratory - by getting broad/general information and "drilling down" to the desired specific inform-
ation. For this method, you would:

l Use mapObjectTypeList to show the map object <type>s.

l Use mapObjectTypeInfo <type> to see if it has parameters or other information.

l Use mapObjectList <type> to get the <name> of the map objects of that type.

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 159

mapObjectTypeInfo Command

l Use mapObjectInfo <name> to get information about each map object (this is mostly for
those that have parameters).

l Direct - by going after information on a specific map object. For this method, you would:

l Use mapObjectInfo <name> to find out its <type> and its parameters.

l Use mapObjectTypeInfo <type> to see what parameters it has andwhat they mean. This
step isn't needed if you already know what the parameters mean. However, it can be useful
for verifying ordering and other details.

For more details on these commands, see the links in the Related Commands section.

Examples

The following example displays detailed information about the "DriveOnRightSector" object type:

mapObjectTypeInfo DriveOnRightSector

The command returns:

MapObjectTypeList: DriveOnRightSector SectorType "PreferredDirectionRightSingle" "One
Way Drive on Right"
MapObjectTypeInfoArgument: UseDefaultSideOffset bool Normal "True to use the default
side offset of 'Path Planning Settings'->'PreferredDirectionSideOffset', false to use
the PreferredDirectionSideOffset parameter of this object."
MapObjectTypeInfoArgument: PreferredDirectionSideOffset int Normal "The side offset for
this sector, which decides how far from the edge of the sector the robot will try to
drive. Setting this too low may cause the robot to pop out of the sector if it can get
to an open area."
End of MapObjectTypeInfo

Related Commands

mapObjectInfo Command on page 155

mapObjectList Command on page 157

mapObjectTypeList Command on page 161

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 160

mapObjectTypeList Command

mapObjectTypeList Command
Gets a list of the types of map objects in the map.

Syntax

mapObjectTypeList

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

This command does not have any parameters.

Responses

The command returns:

MapObjectTypeList: <typeName> <metaType>
MapObjectTypeList: <typeName> <metaType>
End of MapObjectTypeList

Details

The mapObjectInfo command displays a list of the various types of map objects contained in the current
map. See Examples for details.

There are four related commands that are used to get information about map objects:mapObjectTypeList,
mapObjectTypeInfo, mapObjectList, andmapObjectInfo. These can be used in one of two ways:

l Exploratory - by getting broad/general information and "drilling down" to the desired specific inform-
ation. For this method, you would:

l Use mapObjectTypeList to show the map object <type>s.

l Use mapObjectTypeInfo <type> to see if it has parameters or other information.

l Use mapObjectList <type> to get the <name> of the map objects of that type.

l Use mapObjectInfo <name> to get information about each map object (this is mostly for
those that have parameters).

l Direct - by going after information on a specific map object. For this method, you would:

l Use mapObjectInfo <name> to find out its <type> and its parameters.

l Use mapObjectTypeInfo <type> to see what parameters it has andwhat they mean. This

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 161

mapObjectTypeList Command

step isn't needed if you already know what the parameters mean. However, it can be useful
for verifying ordering and other details.

For more details on these commands, see the links in the Related Commands section.

Examples

The following example lists the types of map objects in the current map:

mapObjectTypeList

The command returns:

MapObjectTypeList: DriveOnRightSector SectorType
MapObjectTypeList: FastSector SectorType
MapObjectTypeList: LocalPathPlanningBehaviorSector SectorType
MapObjectTypeList: MovementParametersSector SectorType
End of MapObjectTypeList

Related Commands

mapObjectInfo Command on page 155

mapObjectList Command on page 157

mapObjectTypeInfo Command on page 159

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 162

newConfigParam Command

newConfigParam Command
Adds a custom parameter to ARAM’s configuration, which can then be managed through ARCL or
MobilePlanner.

Syntax

newConfigParam <section> <name> <description> <priority_level> <type> <default_value> <min>
<max> <DisplayHint>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

The parameter is not persistent through an ARAM restart; however, its last-set value persists.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

The command parameters are described in the following table.

Parameters Definition

section Enter the name of the section where you want to add a new con-
figuration parameter. This is a text string and is case-sensitive.

name Enter the name of the new configuration parameter. This is a text
string and is case-sensitive.

description Enter a description of the new configuration parameter. This is a
text string with quotes around it.

priority_level Enter the priority level of the new parameter: Basic, Intermediate,
Advanced, Expert or Factory.

type Enter the type of parameter: integer, double, string, boolean or sep-
arator.

default_value Enter the default value for the parameter.

min Enter a minimum value, if applicable, otherwise enter "None".

max Enter a maximum value, if applicable, otherwise enter "None".

DisplayHint Enter a display hint for the new configuration parameter. This is a
text string with quotes around it. If you do not want to use a display
hint, enter "None".

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 163

newConfigParam Command

Responses

The command returns:

Will add new param '<name>' to section '<section>'

Details

The newConfigParam command adds a custom parameter to ARAM’s configuration. After the parameter is
added, it can be managed through ARCL or MobilePlanner. For details on managing parameters in
MobilePlanner, see the Adept Motivity User's Guide.

Examples

The following example adds a new configuration parameter "newparam" to the section "Log":

newconfigparam Log newparam "this is a test param" Basic string "a test" none none "a
hint"
Will add new param 'newparam' to section 'Log'

You can see the new parameter by entering the getConfigSectionInfo command, as follows:

getconfigsectioninfo log
GetConfigSectionInfo: "" "CENTRAL_SECTION"
GetConfigSectionParamInfo: String newparam Basic None None "this is a test param" "a
hint"
EndOfGetConfigSectionInfo

Related Commands

configAdd Command on page 85

configParse Command on page 87

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 164

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

newConfigSectionComment Command

newConfigSectionComment Command
Adds a comment to a section.

Syntax

newConfigSectionComment <section> <comment>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

ARAM Settings

You have to explicitly enable this feature in MobilePlanner by checking and applying the ArclConfig para-
meter in the ARCL server setup section of the Configuration > Robot Interface tab. For more inform-
ation, see Set ARCL Parameters in MobilePlanner on page 30. Changes do not take effect until: the robot is
idle and stationary; the Configuration changes are saved.

Parameters

The command parameters are described in the following table.

Parameters Definition

section Enter the name of the section from which you want to see a list of
parameter values. This is a text string and is case-sensitive.

comment Enter a description of the new configuration parameter. This is a
text string; quotes around it are optional.

Responses

The command returns:

Will add config comment '<comment>' to section '<section>'

Details

The newConfigSectionComment command allows you to enter a comment to display above the section’s
parameter list in the MobilePlanner configuration dialog.

Examples

This example adds the comment "my comments" to the section "Log":

newConfigSectionComment Log "my comments"
Will add config comment 'my comments' to section 'Log'

You can see the added comment by entering the getConfigSectionInfo command, as follows:

getconfigsectioninfo log

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 165

newConfigSectionComment Command

GetConfigSectionInfo: "my comments" "CENTRAL_SECTION"
GetConfigSectionParamInfo: String newparam Basic None None "this is a test param" "a
hint"
EndOfGetConfigSectionInfo

Related Commands

configAdd Command on page 85

configParse Command on page 87

configStart Command on page 89

getConfigSectionInfo Command on page 117

getConfigSectionList Command on page 119

getConfigSectionValues Command on page 121

newConfigParam Command on page 163

newConfigSectionComment Command on page 165

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 166

odometer Command

odometer Command
Shows the robot trip odometer readings.

Syntax

odometer

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Odometer: <distance> mm <heading> deg <time> sec

Details

How far and how long the robot has traveled since ARAM startup or reset. The odometer is reset with the
odometerReset command. For details, see odometerReset Command on page 168.

Examples

To view the robot odometer readings, enter the following:

odometer

The command returns:

Odometer: 8281 mm 210 deg 469 sec

Related Commands

odometerReset Command on page 168

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 167

odometerReset Command

odometerReset Command
Resets the robot trip odometer.

Syntax

odometerReset

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Reset odometer

Details

The odometerReset command resets distance, heading and time odometer values to 0.

Examples

To reset the robot odometer, enter the following:

odometerreset

The command returns:

Reset odometer

Related Commands

odometer Command on page 167

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 168

oneLineStatus Command

oneLineStatus Command
Shows the status of the robot on one line of text.

Syntax

oneLineStatus

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Status: Arrived at <goal> BatteryVoltage: <volts_dc> Location: <X_mm> <Y_mm> <heading>
Temperature: <degrees>

Details

The oneLineStatus command returns the robot’s operating state, battery voltage and position status as a
single line of text. To get a multi-line status of the robot, use the status command. For details, see status
Command on page 276.

Examples

To get a one-line status of the robot, enter the following:

onelinestatus

The command returns:

Status: Arrived at g_24 BatteryVoltage: 13.0 Location: 7038 -8342 0 Temperature: -127

Related Commands

getDateTime Command on page 123

getGoals Command on page 124

getInfo Command on page 126

getInfoList Command on page 128

getPayload Command on page 132

Adept ARCL Reference Guide, Updated: 9:26:52 AM

Page 169

oneLineStatus Command

getRoutes Command on page 134

queryDockStatus Command on page 203

queryMotors Command on page 207

status Command on page 276

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 170

outputList Command

outputList Command
Lists the named digital outputs.

Syntax

outputList

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Output: <name>
...
End of OutputList

Details

The outputList command returns the list of digital outputs. To get the status of a particular digital output,
use the outputQuery command. For details, see outputQuery Command on page 175.

Examples

To get the list of digital outputs, enter the following:

outputlist

The command returns:

OutputList: out_one
OutputList: out_two
End of OutputList

Related Commands

inputList Command on page 142

inputQuery Command on page 144

outputOff Command on page 173

outputOn Command on page 174

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 171

outputList Command

outputQuery Command on page 175

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 172

outputOff Command

outputOff Command
Turns off the named digital output.

Syntax

outputOff<name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the output to turn off.

Responses

The command returns:

Output: <name> <status>

Details

The outputOff command turns off the named digital output. To get a list of the digital outputs, use the out-
putList command. For details, see outputList Command on page 171.

Examples

To turn off digital output named "out_one", enter the following:

outputoff out_one

The command returns:

Output: out_one off

Related Commands

inputList Command on page 142

inputQuery Command on page 144

outputList Command on page 171

outputOn Command on page 174

outputQuery Command on page 175

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 173

outputOn Command

outputOn Command
Turns on the named digital output.

Syntax

outputOn <name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the output to turn on.

Responses

The command returns:

Output: <name> <status>

Details

The outputOn command turns on the named digital output. To get a list of the digital outputs, use the out-
putList command. For details, see outputList Command on page 171.

Examples

To turn on digital output named "out_one", enter the following:

outputon out_one

The command returns:

Output: out_one on

Related Commands

inputList Command on page 142

inputQuery Command on page 144

outputList Command on page 171

outputOff Command on page 173

outputQuery Command on page 175

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 174

outputQuery Command

outputQuery Command
Queries the state of a named output.

Syntax

outputQuery <name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the output to query.

Responses

The command returns:

Output: <name> <status>

Details

The outputQuery command returns the status of the named digital output. To get a list of the digital out-
puts, use the outputList command. For details, see outputList Command on page 171.

Examples

To get the status of digital output named "out_one", enter the following:

outputquery out_one

The command returns:

Output: out_one off

Related Commands

inputList Command on page 142

inputQuery Command on page 144

outputList Command on page 171

outputOff Command on page 173

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 175

outputQuery Command

outputOn Command on page 174

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 176

patrol Command

patrol Command
Initiates continuous patrol of the named route.

Syntax

patrol<route_name>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

route_name Enter the name of the route you want the robot to patrol.

Responses

The command returns:

Patrolling route <route_name>

Details

The patrol command instructs the robot to perform a continuous patrol of the named route. ("Patrol"
means to stop at all the route goals in the order on the route list.) The robot will keep patrolling until a stop
command is entered. For details, see stop Command on page 278.

Examples

The following example starts a patrol of the route named "test" and then interrupts the patrol with a stop
command.

patrol test
Patrolling route test

stop
Interrupted: Patrolling route test
Stopping
Stopped

Related Commands

patrolOnce Command on page 179

patrolResume Command on page 181

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 177

patrol Command

stop Command on page 278

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 178

patrolOnce Command

patrolOnce Command
Patrol the named route one time.

Syntax

patrolOnce <route_name> [index]

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

route_name Enter the name of the route you want the robot to patrol.

index Enter an optional index value. No value or 0 instructs the robot to
start at the beginning of the route.

Responses

The command returns:

Patrolling route <route_name> once
Finished patrolling route <route_name>

Details

The patrolOnce command instructs the robot to patrol the named route one time. ("Patrol" means to stop
at all the route goals in the order on the route list.) The patrol starts from the first goal on the list or from
the specified indexed goal.

Examples

To command the robot to patrol the route "test", enter:

patrolonce test

The command returns:

Patrolling route test once
Finished patrolling route test

Related Commands

patrol Command on page 177

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 179

patrolOnce Command

patrolResume Command on page 181

stop Command on page 278

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 180

patrolResume Command

patrolResume Command
Continue navigating the current route.

Syntax

patrolResume [route_name]

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

route_name Enter the name of the route you want the robot to patrol.

Responses

The command returns:

Patrolling route <route_name> once
Finished patrolling route <route_name>

Details

The patrolResume command instructs the robot to continue the patrol of the named route. ("Patrol"
means to stop at all the route goals in the order on the route list.)

Examples

The following example starts a patrol of the route named "test", interrupts the patrol with a stop com-
mand, and then uses the patrolResume command to continue the patrol.

patrolonce test 0
Patrolling route test once

stop
Interrupted: Patrolling route test once
Stopping
Stopped

patrolresume test
Patrolling route test once
Finished patrolling route test

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 181

patrolResume Command

Related Commands

patrol Command on page 177

patrolOnce Command on page 179

stop Command on page 278

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 182

pauseTaskCancel Command

pauseTaskCancel Command
Cancels the pause task if one is active.

Syntax

pauseTaskCancel

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

PauseTask: <status>

The pauseTaskCancel command returns one of the following status messages:

l PauseTask: Pausing with status "Pausing"
l PauseTask: Pausing interrupted
l PauseTask: Pausing cancelled
l PauseTask: Not pausing

These messages are broadcast to all of the clients, with the exception of "Not pausing".

Details

The pauseTaskCancel command is used to cancel a pause task if one is active. See the Examples section.

Examples

The following example starts, builds and executes a task list. The pauseTaskCancel command is used to end
the "pause" (3rd) task on the list. When the pause task is canceled, the robot continues to the last goal (g_
23).

liststart mylist
List being cleared
Making new list

listadd goto g_5
Added task 'goto g_5' to the list
listadd goto g_6
Added task 'goto g_6' to the list
listadd pause
Added task 'pause' to the list
listadd goto g_23

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 183

pauseTaskCancel Command

Added task 'goto g_23' to the list

listexecute
Executing list

pausetaskcancel
PauseTask: Pause cancelled
Successfully finished task list

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 184

pauseTaskState Command

pauseTaskState Command
Displays the status of the pause task.

Syntax

pauseTaskState

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

PauseState: <status>

The pauseTaskState command returns one of the following status messages:

l PauseState: Pausing with status "Pausing"
l PauseState: Pausing interrupted
l PauseState: Pausing cancelled
l PauseState: Not pausing

These messages are not broadcast to all of the clients, with the exception of "Not pausing". This command
is helpful after a connection, to make sure a broadcast wasn't missed.

Examples

The following example shows the status of the pause task.

pausetaskstate
PauseState: Pausing with status "Pausing"

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 185

pauseTaskState Command

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 186

payloadQuery Command (shortcut: pq)

payloadQuery Command (shortcut: pq)
Queries the payload for a specified robot, a specified robot and slot, or all connected robots that have a pay-
load configured.

Syntax

payloadQuery [robotName or "default"] [slotNumber or "default"] [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

robotName Enter the name of the robot to display its slot information.

slotNumber Enter the slot number to display its information. Requires a value in
the previous parameter.

echoString An optional string that is appended to each line of the results.
Requires a value in the previous parameter.

Responses

The command returns the payload query in the following format:

PayloadQuery: "<robotName>" <slotNumber> "<description>" <date> <time> "[echoString]"

The date and time are assigned by the system when the slot payload is set on the robot.

Details

This command can be used to view the payload information for:

l all slots on all robots

l a specified slot on a robot

l all slots on a specified robot

Slot numbering starts at 1 (there is no slot 0).

An optional string can be specified, which will be appended to each line of the results.

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 187

payloadQuery Command (shortcut: pq)

Examples

In the example below, robot 21 is carrying books and glasses. To view what robot 21 is carrying, enter the
following command:

payloadQuery 21

The command returns:

PayloadQuery: "21" 1 "Books" 05/07/2012 21:11:33 ""
PayloadQuery: "21" 2 "Glasses" 05/07/2012 21:15:11 ""
PayloadQuery: "21" 3 "Empty" None None ""
PayloadQuery: "21" 4 "Empty" None None ""
EndPayloadQuery

The following example displays all of the defined slots on all robots connected to the Enterprise Manager.
The command is entered without the robotName argument.

payloadQuery
PayloadQuery: "21" 1 "Books" 05/07/2012 21:11:33 ""
PayloadQuery: "21" 2 "Glasses" 05/07/2012 21:14:51 ""
PayloadQuery: "21" 3 "Empty" None None ""
PayloadQuery: "21" 4 "Empty" None None ""
PayloadQuery: "22" 1 "Empty" None None ""
PayloadQuery: "22" 2 "Empty" None None ""
PayloadQuery: "22" 3 "stuff" 09/10/2012 12:14:14 ""
PayloadQuery: "22" 4 "Empty" None None ""
PayloadQuery: "23" 1 "morestuff" 09/10/2012 12:17:23 ""
PayloadQuery: "23" 2 "Empty" None None ""
PayloadQuery: "23" 3 "Bread" 09/10/2012 12:23:39 ""
PayloadQuery: "23" 4 "Empty" None None ""
EndPayloadQuery

The following example displays all of the defined slots on all robots and echoes the string "hello":

payloadquery default default hello
PayloadQuery: "31" 1 "slotjunk" 05/07/2012 21:11:33 hello
PayloadQuery: "31" 2 "abc" 05/07/2012 21:10:53 hello
PayloadQuery: "31" 3 "def" 09/10/2012 12:14:14 hello
PayloadQuery: "31" 4 "ghi" 09/10/2012 12:23:39 hello
PayloadQuery: "32" 1 "Empty" None None hello
PayloadQuery: "32" 2 "Empty" None None hello
PayloadQuery: "32" 3 "Empty" None None hello
PayloadQuery: "32" 4 "Empty" None None hello
PayloadQuery: "33" 1 "Empty" None None hello
PayloadQuery: "33" 2 "Empty" None None hello
PayloadQuery: "33" 3 "Empty" None None hello
PayloadQuery: "33" 4 "Empty" None None hello
PayloadQuery: "34" 1 "Empty" None None hello
PayloadQuery: "34" 2 "Empty" None None hello
PayloadQuery: "34" 3 "Empty" None None hello
PayloadQuery: "34" 4 "Empty" None None hello
PayloadQuery: "35" 1 "Empty" None None hello
PayloadQuery: "35" 2 "Empty" None None hello
PayloadQuery: "35" 3 "Empty" None None hello

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 188

payloadQuery Command (shortcut: pq)

PayloadQuery: "35" 4 "Empty" None None hello
PayloadQuery: "36" 1 "Empty" None None hello
PayloadQuery: "36" 2 "Empty" None None hello
PayloadQuery: "36" 3 "Empty" None None hello
PayloadQuery: "36" 4 "Empty" None None hello
EndPayloadQuery

Related Commands

getPayload Command on page 132

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 189

payloadQueryLocal Command (shortcut: pql)

payloadQueryLocal Command (shortcut: pql)
Queries the payload for the robot and specified slot.

Syntax

payloadQueryLocal [slotNumber or "default"] [echoString]

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

slotNumber Enter the slot number to display its information.

echoString An optional string that is appended to each line of the results.
Requires a value in the previous parameter.

Responses

The command returns the payload query in the following format:

PayloadQueryLocal: <slotNumber> "<description>" <date> <time> "[echoString]"

The date and time are assigned by the system when the slot payload is set. For details, see payloadSet
Command (shortcut: ps) on page 194.

Details

This command can be used to view the payload information for:

l all slots on the "default" robot

l a specified slot on the "default" robot

Slot numbering starts at 1 (there is no slot 0).

An optional string can be specified, which will be appended to each line of the results.

Examples

The following command displays all slots on the local robot and echoes the string "hello":

payloadquerylocal default hello
PayloadQuery: 1 "slotjunk" 05/07/2012 21:11:33 hello
PayloadQuery: 2 "abc" 05/07/2012 21:10:53 hello

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 190

payloadQueryLocal Command (shortcut: pql)

PayloadQuery: 3 "def" 09/10/2012 12:14:14 hello
PayloadQuery: 4 "ghi" 09/10/2012 12:23:39 hello
EndPayloadQuery

Related Commands

getPayload Command on page 132

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 191

payloadRemove Command (shortcut: pr)

payloadRemove Command (shortcut: pr)
Empties the specified payload slot on the robot.

Syntax

payloadRemove <slot_number>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

slot_number Enter an integer greater than zero (slot numbering starts at 1).

Responses

The command returns the following for a pending item:

payloadremove attempting to remove slot <slot_number>
payloadremove on <robot> of slot number <slot_number> successfully
PayloadUpdate: "<robot>" <slot_number> "Empty" None None

Details

The payloadRemove command empties a payload slot on the robot. The slot number must be specified,
and it starts at 1.

Examples

To empty payload slot 4 on the robot, enter

payloadRemove 4

The command returns:

payloadremove attempting to remove slot 4
payloadremove on 31 of slot number 4 successfully
PayloadUpdate: "31" 4 "Empty" None None

Related Commands

getPayload Command on page 132

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 192

payloadRemove Command (shortcut: pr)

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 193

payloadSet Command (shortcut: ps)

payloadSet Command (shortcut: ps)
Defines a payload slot on this robot.

Syntax

payloadSet <slot_number> <slot_string>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

slot_number Enter an integer greater than zero, to define a payload slot on this
robot.

slot_string Enter a description of the contents of the payload.

Responses

The command returns:

payloadset attempting to set payload <slot_number> "<slot_string>"
payloadset on "<robot>" of slot number <slot_number> with string "<slot_string>" suc-
cessfully set
PayloadUpdate: "<robot>" <slot_number> "<slot_string>"

Details

The payloadSet command defines a payload slot on the robot. These slots represent containers where the
objects (payload) are carried on top of the robot. For example, you can assign a name to slot 1 on robot
"xyz" that represents the object the robot is to carry from one goal to the next. This allows you to keep
track of what the robot is transporting.

If the robot does not have multiple payload slots, you can use the setPayload command to set the payload
name for the entire robot. For details, see setPayload Command on page 272.

Examples

To define payload slot 1 with the object "Books", enter:

payloadSet 1 Books

The command returns:

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 194

payloadSet Command (shortcut: ps)

payloadset attempting to set payload 1 "Books"
payloadset on "Adept_Telepresence_Robot" of slot number 1 with string "Books" suc-
cessfully set
PayloadUpdate: "Adept_Telepresence_Robot" 1 "Books"

Related Commands

getPayload Command on page 132

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 195

payloadSlotCount Command (shortcut: psc)

payloadSlotCount Command (shortcut: psc)
Displays the slot count on a specific robot or on all robots.

Syntax

payloadSlotCount [robotName or "default"] [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

robotName Enter the name of the robot to display its slot count. To view the
slot counts for all connected robots, enter the commandwith no
parameter or enter "default".

echoString An optional string that is appended to each line of the
results. Requires a value in the previous parameter.

Responses

The command returns the slot count in the following format:

PayloadSlotCount: "<robotName>" <slotCount> <date> <time> "[echoString]"

The date and time are assigned by the system.

Details

The payloadSlotCount command is used to display the slot count on a specific robot or on all robots. To limit
the query to a specific robot, enter the robot name; to view the slot count on all robots, omit the robot
name.

Slot numbering starts at 1 (there is no slot 0).

An optional string can be specified, which will be appended to each line of the results.

Examples

To view the slot count for robot 21, enter the following command:

payloadslotcount 21

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 196

payloadSlotCount Command (shortcut: psc)

The command returns:

PayloadSlotCount: "21" 4 ""
EndPayloadSlotCount

The following example displays the slot counts on all robots connected to the Enterprise Manager. The com-
mand is entered without the robotName argument.

payloadSlotCount
PayloadSlotCount: "21" 4 04/27/2012 06:37:33 “”
PayloadSlotCount: "22" 5 04/27/2012 08:37:33 “”
PayloadSlotCount: "23" 4 04/27/2012 07:37:33 “”
EndPayloadSlotCount

Related Commands

getPayload Command on page 132

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCountLocal Command (shortcut: pscl) on page 198

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 9:26:53 AM

Page 197

payloadSlotCountLocal Command (shortcut: pscl)

payloadSlotCountLocal Command (shortcut: pscl)
Displays a slot count on this robot.

Syntax

payloadslotcountlocal

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The payloadSlotCountLocal command does not have any arguments.

Examples

The following command displays the slot count for the local robot and echoes the string "testing":

payloadslotcountlocal
PayloadSlotCount: "Adept_Telepresence_Robot" 4
EndPayloadSlotCount

Related Commands

getPayload Command on page 132

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

setPayload Command on page 272

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 198

play Command

play Command
Plays a .wav sound file on the robot.

Syntax

play <path_file>

Usage Considerations

This ARCL command is only available on the robot.

The sound file must be in .wav format.

Parameters

The command parameters are described in the following table.

Parameter Definition

path_file Enter the path and name of the sound file with the .wav extension.
Files in subfolders must be use a forward slash between folder
names, for example:

/subfolder1/subfolder2/wavefile.wav

Responses

The command returns:

Playing <path_file>

Details

The play command plays a .wav sound file on the mobile robot. It is equivalent to the playInstant task,
which plays the specified wave file through the robot’s audio output, if enabled.

Although ARCL does not provide a way to list the sound files on the robot, you can view the files using
MobilePlanner File > Download/Uploadmenu selection, as shown in the following figure.

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 199

play Command

To have the robot speak a text string, use the say command. For details, see say Command on page 261.

Examples

The following example plays the file "WindowsLogonSound.wav", which is shown in the root folder of the
robot in the previous figure.

play WindowsLogonSound.wav
Playing WindowsLogonSound.wav

Related Commands

say Command on page 261

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 200

popupSimple Command

popupSimple Command
Display a popupmessage in the MobileEyes software.

Syntax

popupSimple <"title"> <"message"> <"buttonLabel"> <timeout>

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

All parameters, except for timeout, must be enclosed in double quotes.

Parameters

The command parameters are described in the following table.

Parameter Definition

"title" Enter a string enclosed in double quotes for the title.

"message" Enter a string enclosed in double quotes for the message.

"buttonLabel" Enter a string enclosed in double quotes for the button label.

timeout Integer that specifies the time (in seconds) the popupwill remain on
the screen.

Responses

The command returns:

Creating simple popup

Details

The popupSimple command is used to create a popupmessage for the MobileEyes software. When the com-
mand is entered, the popupmessage is immediately displayed; it remains on screen for the timeout period
(in seconds) or until the user clicks the button or close (x) icon, whichever occurs first.

Examples

The following example displays a simple popup test message, which remains on the screen for 30 seconds.
A sample of the popup is shown in the following figure.

popupsimple "test" "this is a test popup" "Close" 30
Creating simple popup

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 201

popupSimple Command

Example PopupMessage

Related Commands

play Command on page 199

say Command on page 261

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 202

queryDockStatus Command

queryDockStatus Command
Gets the docking/charging status.

Syntax

queryDockStatus

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

DockingState: <Docking,Docked,Undocked> ForcedState: <Forced,Unforced> ChargeState:
<Not,Bulk,Overcharge,Float>

Details

The queryDockStatus command returns the current docking/charging state of the robot.

Examples

To view the robot docking/charge status, enter:

querydockstatus

The command returns:

DockingState: Docking ForcedState: Unforced ChargeState: Not

Related Commands

queryMotors Command on page 207

status Command on page 276

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 203

queryFaults Command (shortcut: qf)

queryFaults Command (shortcut: qf)
Displays the faults associated with the specified robot.

Syntax

queryFaults [robotName or "default"] [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Displays all faults on the specified robot. Displays faults on all robots if the robotName parameter is omit-
ted.

Parameter

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

robotName Enter the name of the robot. To view all the robots connected to
the Enterprise Manager, omit this parameter or enter "default".

echoString An optional string that is appended to each line of the results.

Responses

The command returns the following for a pending item:

RobotFaultQuery: <robotName> <faultName> <faultShortDescription> <faultLongDescription>
<bool:drivingFault> <bool:criticalFault><bool:applicationFault><bool:clearedOnGo><bool:
clearedOnAcknowledgement> <echoString>
EndQueryFaults

Details

The queryFaults command provides a listing of all faults for the specified robot, or all faults for all robots con-
nected to the Enterprise Manager if no robot is specified.

Example
queryfaults robot1
RobotFaultQuery: "robot1" Fault_Critical_Application fault1 "shortdesc" "longdesc" false
true true false false “”
EndQueryFaults

queryfaults robot1 echoit
RobotFaultQuery: "robot1" Fault_Critical_Application fault1 "shortdesc" "longdesc" false

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 204

queryFaults Command (shortcut: qf)

true true false false echoit
EndQueryFaults

queryfaults
RobotFaultQuery: "robot2" Fault_Driving_Application fault2 "shortd" "longd" true false
true false false “”
RobotFaultQuery: "robot1" Fault_Critical_Application fault1 "shortdesc" "longdesc" false
true true false false “”
EndQueryFaults

queryfaults
RobotFaultQuery: "guiabot_2010_09_20" Fault_Driving_Application fault2 "shortd" "longd"
true false true false false “”
RobotFaultQuery: "showpatrolbot1" Fault EncoderDegraded "Encoder degraded" "The robot's
encoders may be degraded" false true false false false “”
RobotFaultQuery: "showpatrolbot1" Fault_Driving EncoderFailed "Encoder failed" "The
robot's encoders have failed, turn off the robot and contact your robot provider for main-
tenance" true true false false false “”
RobotFaultQuery: "showpatrolbot1" Fault_Critical GyroFault "Gyro fault" "The robot's gyro
has had a critical fault, you may power cycle the robot and continue using it, but you
should also contact your robot provider for maintenance" true true false false false “”
RobotFaultQuery: "showpatrolbot1" Fault_Critical OverTemperatureAnalog "Robot overheated
(analog)" "The robot is too hot (measured by analog) and will shut down shortly" false
true false false false “”
RobotFaultQuery: "showpatrolbot1" Fault_Critical UnderVoltage "Robot battery critically
low" "The robot battery is critically low and will shut down shortly" false true false
false false “”
RobotFaultQuery: "showpatrolbot1" Fault_Critical_Application fault1 "shortdesc" "long-
desc" false true true false false “”
RobotFaultQuery: "showpatrolbot1" Fault_Application fault3 "short" "long" false true true
false false “”
EndQueryFaults

The broadcast messages to EM ARCL when robots set/clear faults will have the following formats:

RobotFault: " showpatrolbot1" Fault_Application fault3 "short" "long" false true true
false false
RobotFault: " showpatrolbot1" Fault_Driving_Application fault2 "shortd" "longd" true
false true false false
RobotFault: " showpatrolbot1" Fault_Critical OverTemperatureAnalog "Robot overheated (ana-
log)" "The robot is too hot (measured by analog) and will shut down shortly" false true
false false false
RobotFault: " showpatrolbot1" Fault_Critical UnderVoltage "Robot battery critically low"
"The robot battery is critically low and will shut down shortly" false true false false
false
RobotFault: " showpatrolbot1" Fault EncoderDegraded "Encoder degraded" "The robot's
encoders may be degraded" false true false false false
RobotFault: " showpatrolbot1" Fault_Driving EncoderFailed "Encoder failed" "The robot's
encoders have failed, turn off the robot and contact your robot provider for maintenance"
true true false false false
RobotFault: " showpatrolbot1" Fault_Critical GyroFault "Gyro fault" "The robot's gyro has
had a critical fault, you may power cycle the robot and continue using it, but you should
also contact your robot provider for maintenance" true true false false false
RobotFault: "Sim2" Fault_Application_ClearedOnAcknowledgement f1 "s" "l" false false true

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 205

queryFaults Command (shortcut: qf)

false true
RobotFaultCleared: "showpatrolbot1" Fault EncoderDegraded "Encoder degraded" "The
robot's encoders may be degraded" false true false false false
RobotFaultCleared: "showpatrolbot1" Fault_Driving EncoderFailed "Encoder failed" "The
robot's encoders have failed, turn off the robot and contact your robot provider for
maintenance" true true false false false
RobotFaultCleared: "showpatrolbot1" Fault_Critical GyroFault "Gyro fault" "The robot's
gyro has had a critical fault, you may power cycle the robot and continue using it, but
you should also contact your robot provider for maintenance" true true false false false
RobotFaultCleared: "showpatrolbot1" Fault_Critical OverTemperatureAnalog "Robot over-
heated (analog)" "The robot is too hot (measured by analog) and will shut down shortly"
false true false false false
RobotFaultCleared: "showpatrolbot1" Fault_Critical UnderVoltage "Robot battery crit-
ically low" "The robot battery is critically low and will shut down shortly" false true
false false false
RobotFaultCleared: "showpatrolbot1" Fault_Critical_Application fault1 "shortdesc" "long-
desc" false true true false false
RobotFaultCleared: "Sim2" Fault_Application_ClearedOnAcknowledgement f1 "s" "l" false
false true false true
EndQueryFaults

Related Commands

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueModify Command (shortcut: qmod) on page 218

queueModify Command (shortcut: qmod) on page 218

queueMulti Command (shortcut: qm) on page 229

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShowRobot Command (shortcut: qsr) on page 251

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 206

queryMotors Command

queryMotors Command
Gets the state of the robot motors.

Syntax

queryMotors

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Motors <enabled or disabled>

or

Estop pressed

or

Estop relieved but motors still disabled

Details

The queryMotors command returns the current state of the robot motors. The response includes motors
enable and e-stop status.

Examples

To view the current state of the robot motors, enter:

querymotors

The command returns:

Motors enabled

With an Estop event:

EStop pressed
EStop relieved but motors still disabled
Motors enabled
Stopping
Stopped

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 207

queryMotors Command

Here's one with queries colorcoded (red == broadcasts, black are my queries and the responses to them):

EStop pressed

querymotors
EStop pressed

EStop relieved but motors still disabled

querymotors
EStop relieved but motors still disabled
Motors enabled
Stopping
Stopped

querymotors
Motors enabled

The motor disabled won't normally be seen (the old robots had buttons to do that, the new ones don't)...
but you can see it with the 4 0 above. It's:

Motors disabled
Motors enabled
Stopping
Stopped

With queries colorcoded (red == broadcasts, black are my queries and the responses to them):

Motors disabled

querymotors
Motors disabled

Motors enabled

Stopping
Stopped

querymotors
Motors enabled

The 'Stopping' and 'Stopped' shouldn't be mentioned because other things could happen there (if a robot
was docked, or if it had a pending job or something, it'd be different messages).

Related Commands

queryDockStatus Command on page 203

status Command on page 276

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 208

queueCancel Command (shortcut: qc)

queueCancel Command (shortcut: qc)
Cancels a queued request for a robot by type or value.

Syntax

queueCancel<type> <value> [echoString or "default"] [reason]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

type Enter the type of job. Valid types are:

l id = the pickup or dropoff identification
l jobId = the job identification
l robotName = the robot name
l status = the item status.

value Enter the value that corresponds with the type used:

For id, enter the pickup or dropoff identification, for example:
PICKUP2

For jobId, enter the job identification, for example: JOB2

For robotName, enter the robot name, for example: robot_34

For status, enter one of the following values:

l inprogress = cancels a job with an InProgress status.
l pending = cancels a job with a Pending status.
l interrupted = cancels a job with an Interrupted status.

echoString An optional string that is appended to each line of the results.

reason An optional string that can be used to provide a reason for the can-
cellation.

Responses

The command returns the following for a pending item:

queuecancel cancelling <cancelType> <cancelValue> <echoString> <reason> from queue

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 209

queueCancel Command (shortcut: qc)

QueueUpdate: <id> <jobId> <priority> <status = Cancelled> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate> <com-
pletedTime> <echoString>

The command returns the following for an in-progress item:

queuecancel cancelling <cancelType> <cancelValue> <echoString> from queue
QueueUpdate: <id> <jobId> <priority> <status = Cancelling> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate = None> <com-
pletedTime = None> <echoString>
QueueUpdate: <id> <jobId> <priority> <status = Interrupted> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate = None> <com-
pletedTime = None> <failedCount>
QueueUpdate: <id> <jobId> <priority> <status = Cancelled> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate> <com-
pletedTime> <failedCount>

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

Details

The queueCancel command is used to cancel a queued robot request. The request can be canceled by type
(such as the robot name or job identification) or by the request status.

An optional string can be specified, which will be appended to each line of the results.

Examples

In the following example, a pending item in the queue is canceled.

queuepickup x
queuepickup goal "x" with priority 10, id PICKUP1 and jobId JOB1 successfully queued
QueueUpdate: PICKUP1 JOB1 10 Pending None Goal "x" "None" 04/15/2015 6:32:47 None None 0
queuecancel jobid job1
QueueUpdate cancelling "jobid" "job1" "" "None" from queue
QueueUpdate: PICKUP1 JOB1 10 Cancelled None Goal "x" "None" 04/15/2015 6:32:47
04/15/2015 6:32:53 ""

In the following example, a request that is in progress is canceled.

QueueUpdate: PICKUP8 JOB8 10 InProgress None Goal "w20" MT-490 12/16/2014 13:19:07 None
None
queuecancel goal w20 abc
QueueUpdate: PICKUP8 JOB8 10 Cancelling None Goal "w20" None 12/16/2014 13:19:07 None
None abc
QueueUpdate: PICKUP8 JOB8 10 Interrupted None Goal "w20" None 12/16/2014 13:19:07 None
None
QueueUpdate: PICKUP8 JOB8 10 Cancelled None Goal "w20" None 12/16/2014 13:19:07
12/16/2014 13:19:13

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 210

queueCancel Command (shortcut: qc)

In the following example, a request that is in progress is canceled. The cancel request includes a reason for
the cancellation but no echo.

QueueUpdate: PICKUP2 JOB2 10 InProgress After Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:04:59 None None 0

queuecancel id pickup2 default reason

queuecancel cancelling "id" "pickup2" "" "reason" from queue
QueueUpdate: PICKUP2 JOB2 10 Cancelling reason Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:04:59 None None ""
QueueUpdate: PICKUP2 JOB2 10 Interrupted None Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:04:59 None None 0
QueueUpdate: PICKUP2 JOB2 10 Cancelled reason Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:04:59 01/21/2014 15:05:40 0

In the following example, a request that is in progress is canceled. The cancel request includes no reason
for the cancellation and no echo.

QueueUpdate: PICKUP3 JOB3 10 InProgress After Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:07:58 None None 0

queuecancel jobid job3

QueueUpdate cancelling "jobid" "job3" "" "None" from queue
QueueCancel: PICKUP3 JOB3 10 Cancelling None Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:07:58 None None ""
QueueUpdate: PICKUP3 JOB3 10 Interrupted None Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:07:58 None None 0
QueueUpdate: PICKUP3 JOB3 10 Cancelled None Goal "w20" "guiabot_2010_09_20" 01/21/2014
15:07:58 01/21/2014 15:08:32 0

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 211

queueCancelLocal Command (shortcut: qcl)

queueCancelLocal Command (shortcut: qcl)
Cancels a queued request for a robot by type or value.

Syntax

queueCancelLocal<type> <value> [echoString] [reason]

Usage Considerations

This ARCL command is only available on the robot.

Because the queueCancelLocal command is only available on the robot, it assumes it applies only to the
items queued for that robot. This is a powerful difference (and feature) of the "local" version of the com-
mand. So, for example, a "queueCancelLocal status inprogress" commandwould allow you to cancel,
based on inprogress status, all jobs queued for that particular robot.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

type Enter the type of job. Valid types are:

l id = the pickup or dropoff identification
l jobId = the job identification
l robotName = the robot name
l status = the item status.

value Enter the value that corresponds with the type used:

For id, enter the pickup or dropoff identification, for example:
PICKUP2

For jobId, enter the job identification, for example: JOB2

For status, enter one of the following values:

l inprogress = queries a job with an InProgress status.
l pending = queries a job with a Pending status.
l interrupted = queries a job with an Interrupted status.

NOTE: The value is ignored if type is <robotname>.

echoString An optional string that is appended to each line of the results.

reason An optional string that can be used to provide a reason for the can-
cellation.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 212

queueCancelLocal Command (shortcut: qcl)

Responses

The command returns the following for a pending item:

queuecancel cancelling <cancelType> <cancelValue> <echoString> <reason> from queue
QueueUpdate: <id> <jobId> <priority> <status = Cancelled> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate> <com-
pletedTime> <echoString>

The command returns the following for an in-progress item:

queuecancel cancelling <cancelType> <cancelValue> <echoString> from queue
QueueUpdate: <id> <jobId> <priority> <status = Cancelling> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate = None> <com-
pletedTime = None> <echoString>
QueueUpdate: <id> <jobId> <priority> <status = Interrupted> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate = None> <com-
pletedTime = None> <failedCount>
QueueUpdate: <id> <jobId> <priority> <status = Cancelled> <subStatus = reason_or_None>
Goal <"goalName"> <”robotName”> <queuedDate> <queuedTime> <completedDate> <com-
pletedTime> <failedCount>

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

Details

Because the queueCancelLocal command is only available on the robot, it assumes it applies only to the
items queued for that robot. This is a powerful difference (and feature) of the "local" version of the com-
mand. So, for example, a "queueCancelLocal status inprogress" commandwould allow you to cancel, based
on inprogress status, all jobs queued for that particular robot.

An optional string can be specified, which will be appended to each line of the results.

Example

The following example uses cancellocal with robotname (Note: robotname value field is ignored).

queuecancellocal robotname
queuecancel attempting to cancel "robotname" "Bullwinkle-[.53]" "" "None"
queuecancel cancelling "robotname" "Bullwinkle-[.53]" "" "None" from queue

QueueCancel: DROPOFF18 JOB18 20 Cancelling None Goal "w20" "Bullwinkle-[.53]" 01/21/2014
15:15:30 None None ""
QueueUpdate: DROPOFF18 JOB18 20 Interrupted None Goal "w20" "Bullwinkle-[.53]" 01/21/2014
15:15:30 None None 0
QueueUpdate: DROPOFF18 JOB18 20 Cancelled None Goal "w20" "Bullwinkle-[.53]" 01/21/2014
15:15:30 01/21/2014 15:16:07 0

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 213

queueCancelLocal Command (shortcut: qcl)

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 214

queueDropoff Command (shortcut: qd)

queueDropoff Command (shortcut: qd)
Queues the robot to the dropoff goal.

Syntax

queueDropoff <goalName> [priority] [jobId]

Usage Considerations

This ARCL command is only available on the robot.

ARAM Settings

In order to use this feature, you have to explicitly enable it in the MobilePlanner software, by setting the
EnterpriseQueuing argument in the Enterprise Features section of the Configuration > Enterprise tab.

Parameters

The queueDropoff arguments are described in the table below.

For details on the data types, see Data Types on page 48.

Parameter Definition

goalName Enter the name of the goal where you want the mobile robot to
make a delivery.

priority Enter an optional integer value that represents the priority of the
dropoff request. The higher the number, the sooner Enterprise Man-
ager is going to service the item. The default priority is 10, which
can be changed in MobilePlanner.

jobId Enter an optional identifier for the specified job. You can use a com-
bination of string characters and integers. The jobId is helpful in
tracking the job. If nothing is entered, ARCL generates a random
jobId.

Responses

The command returns:

queuedropoff attempting to queue goal <goalName> <priority> <jobId>
queuedropoff goal <goalName> with priority <priority> id <id> and job_id <jobId> suc-
cessfully queued
QueueUpdate: <id> <jobId> <priority> <status> <substatus> Goal <goalName> <robotName>
<queuedDate> <queuedTime> <completedDate> <completedTime> <failedCount>

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 215

queueDropoff Command (shortcut: qd)

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

Details

The queueDropoff command tells the mobile robot to go to a specified goal, typically to make a delivery.

Examples

The following example shows a queuedropoff at goal x with priority 22, job_id y4rt.

queuedropoff x 22 y4rt
queuedropoff attempting to queue goal "x" with priority 22
queuedropoff goal "x" with priority 22, id DROPOFF18 and job_id y4rt successfully queued
QueueUpdate: DROPOFF18 y4rt 22 Pending None Goal "x" “MT-490” 12/19/2011 07:07:53 None
None 0
Going to X
QueueUpdate: DROPOFF18 y4rt 22 InProgress UnAllocated Goal "x" “MT-490” 12/19/2011
07:07:53 None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress Allocated Goal "x" “MT-490” 12/19/2011
07:07:53 None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress BeforeDropoff Goal "x" “MT-490” 12/19/2011
07:07:53 None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress BeforeEvery Goal "x" “MT-490” 12/19/2011
07:07:53 None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress Before Goal "x" “MT-490” 12/19/2011 07:07:53
None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress Driving Goal "x" “MT-490” 12/19/2011 07:07:53
None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress After Goal "x" “MT-490” 12/19/2011 07:07:53
None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress AfterEvery Goal "x" “MT-490” 12/19/2011
07:07:53 None None 0
QueueUpdate: DROPOFF18 y4rt 22 InProgress AfterPickup Goal "x" “MT-490” 12/19/2011
07:07:53 None None 0
Arrived at X
QueueUpdate: DROPOFF18 y4rt 22 Completed None Goal "x" “MT-490” 01/19/2011 07:07:53
01/19/2011 07:08:07 0

Related Commands

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 216

queueDropoff Command (shortcut: qd)

queueShow Command (shortcut: qs) on page 247

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 217

queueModify Command (shortcut: qmod)

queueModify Command (shortcut: qmod)
Allowsmodification of goal and priority for job segments in these job types:

l PickupDropoff

l Pickups

l Dropoffs

l Swaps

l QueueMulti

Allowsmodification of segments in these states:

l Pending job segments

l InProgress jobs up to and including “InProgressDriving”, but not after

Changing the priority for the first segment in a jobmay change the order in which it gets assigned.
Changing the priority of other segments in the job will never change the order in which the job is assigned.

The queue time for a job will never be changed as a result of a queueModify command,

Changing the shared goal in a swapwill break the link between the two jobs. Changing the other goals in
the swapwill not break the link.

Modified jobs will be candidates for swaps. The linking would occur immediately following the modify

Syntax

queueModify <id> <type> <value>

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

ARAM Settings

In order to use this feature, you have to explicitly enable it in the MobilePlanner software, by setting the
EnterpriseQueuing argument in the Enterprise Features section of the Configuration > Enterprise tab.

Parameters

The queueModify arguments are described in the table below.

For details on the data types, see Data Types on page 48.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 218

queueModify Command (shortcut: qmod)

Parameter Definition

<id> Enter the string id for the job segment you wish tomodify (either
PICKUPxx or DROPOFFxx)

<type> Enter the type of modification. Valid types are:

l goal = the goal identification
l priority = the priority level

<value> Enter the value that corresponds with the type used:

For goal, enter the goal identification, for example: goal_1

For priority, enter the priority level, for example: 10

Responses

Returns (for goal modify of a pending item)

queuemodify modifying id <id> goal <”modifiedGoal”>
QueueUpdate: <id> <jobId> <priority> BeforeModify None Goal <goal> "None" <queuedDate>
<queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> AfterModify None Goal <modifiedGoal> "None"
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> Pending None Goal <modifiedGoal> "None" <queuedDate>
<queuedTime> None None 0

Returns (for priority modify of a pending item)

queuemodify modifying id <id> priority <modifiedpriority>
QueueUpdate: <id> <jobId> <priority> BeforeModify None Goal <goal> "None" <queuedDate>
<queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> AfterModify None Goal <goal> "None"
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> Pending None Goal <modifiedGoal> "None"
<queuedDate> <queuedTime> None None 0

Returns (for goal modify of an in-progress item)

queuemodify modifying id <id> goal <modifiedGoal>
QueueUpdate: <id> <jobId> <priority> BeforeModify Driving Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> InterruptedByModify None Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> AfterModify None Goal <modifiedGoal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> Pending None Goal <modifiedGoal> "None" <queuedDate>
<queuedTime> None None 0

Returns (for priority modify of an in-progress item)

queuemodify modifying id <id> priority <modifiedPriority>
QueueUpdate: <id> <jobId> <priority> BeforeModify Driving Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> InterruptedByModify None Goal <goal> <robot>

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 219

queueModify Command (shortcut: qmod)

<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> AfterModify None Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> Pending None Goal <goal> "None"
<queuedDate> <queuedTime> None None 0

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

Details

The queueModify command allowsmodification of goal or priority values for job segments in these job
types:

l Pickup-dropoff
l Pickups
l QueueMulti

It allowsmodification of segments in these states:

l Pending job segments
l InProgress jobs up to and including “InProgress Driving”, but not after

Changing the priority for the first segment in a jobmay change the order in which it gets assigned.
Changing the priority of other segments in the job will never change the order in which the job is assigned.

The queue time for a job will never be changed as a result of a queueModify command.

Changing the shared goal in a swapwill break the link between the two jobs. Changing the other goals in
the swapwill not break the link.

Modified jobs will be candidates for swaps. The linking would occur immediately following the modify.

Examples

Example #1 – goal modify of a pending item:

queuePickup t
queuePickup goal "t" with priority 10 id PICKUP5 and jobId JOB5 successfully queued
QueueUpdate: PICKUP5 JOB5 10 Pending None Goal "t" "None" 03/25/2015 07:36:58 None None
0
queuemodify pickup5 goal w20
queuemodify modifying id pickup5 goal "w20"
QueueUpdate: PICKUP5 JOB5 10 BeforeModify None Goal "t" "None" 03/25/2015 07:36:58 None
None 0
QueueUpdate: PICKUP5 JOB5 10 AfterModify None Goal "w20" "None" 03/25/2015 07:36:58 None
None 0
QueueUpdate: PICKUP5 JOB5 10 Pending None Goal "w20" "None" 03/25/2015 07:36:58 None
None 0

queueDropoff y
queueDropoff attempting to queue goal "y" using default priority
queueDropoff goal "y" with priority 20 id DROPOFF6 and jobId JOB6 successfully queued
QueueUpdate: DROPOFF6 JOB6 20 Pending None Goal "y" "robotOne" 03/25/2015 07:38:09 None

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 220

queueModify Command (shortcut: qmod)

None 0
queuemodifylocal dropoff6 goal x
queuemodifylocal modifying id dropoff6 goal "x"
QueueUpdate: DROPOFF6 JOB6 20 BeforeModify None Goal "y" "robotOne" 03/25/2015 07:38:09
None None 0
QueueUpdate: DROPOFF6 JOB6 20 AfterModify None Goal "x" "robotOne" 03/25/2015 07:38:09
None None 0
QueueUpdate: DROPOFF6 JOB6 20 Pending None Goal "x" "robotOne" 03/25/2015 07:38:09 None
None 0

Example #2 – priority modify of a pending item:

queueDropoff w20
queueDropoff attempting to queue goal "w20" using default priority
queueDropoff goal "w20" with priority 20 id DROPOFF7 and jobId JOB7 successfully queued
QueueUpdate: DROPOFF7 JOB7 20 Pending None Goal "w20" "robotOne" 03/25/2015 07:39:01 None
None 0
queuemodifylocal dropoff7 priority 22
queuemodifylocal modifying id dropoff7 priority 22
QueueUpdate: DROPOFF7 JOB7 20 BeforeModify None Goal "w20" "robotOne" 03/25/2015 07:39:01
None None 0
QueueUpdate: DROPOFF7 JOB7 22 AfterModify None Goal "w20" "robotOne" 03/25/2015 07:39:01
None None 0
QueueUpdate: DROPOFF7 JOB7 22 Pending None Goal "w20" "robotOne" 03/25/2015 07:39:01 None
None 0

queuePickup v
queuePickup goal "v" with priority 10 id PICKUP8 and jobId JOB8 successfully queued
QueueUpdate: PICKUP8 JOB8 10 Pending None Goal "v" "None" 03/25/2015 07:40:24 None None 0
queuemodify pickup8 priority 6
queuemodify modifying id pickup8 priority 6
QueueUpdate: PICKUP8 JOB8 10 BeforeModify None Goal "v" "None" 03/25/2015 07:40:24 None
None 0
QueueUpdate: PICKUP8 JOB8 6 AfterModify None Goal "v" "None" 03/25/2015 07:40:24 None
None 0
QueueUpdate: PICKUP8 JOB8 6 Pending None Goal "v" "None" 03/25/2015 07:40:24 None None 0

Example #3 – goal modify of an inProgress item:

queuePickup x
queuePickup goal "x" with priority 10 id PICKUP9 and jobId JOB9 successfully queued
QueueUpdate: PICKUP9 JOB9 10 Pending None Goal "x" "None" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress UnAllocated Goal "x" "robotTwo" 03/25/2015
07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Allocated Goal "x" "robotTwo" 03/25/2015 07:47:21
None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Driving Goal "x" "robotTwo" 03/25/2015 07:47:21
None None 0
queuemodify pickup9 goal y
queuemodify modifying id pickup9 goal "y"
QueueUpdate: PICKUP9 JOB9 10 BeforeModify Driving Goal "x" "robotTwo" 03/25/2015 07:47:21
None None 0
QueueUpdate: PICKUP9 JOB9 10 InterruptedByModify None Goal "x" "robotTwo" 03/25/2015
07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 AfterModify None Goal "y" "robotTwo" 03/25/2015 07:47:21

Adept ARCL Reference Guide, Updated: 9:26:54 AM

Page 221

queueModify Command (shortcut: qmod)

None None 0
QueueUpdate: PICKUP9 JOB9 10 Pending None Goal "y" "None" 03/25/2015 07:47:21 None None
0
QueueUpdate: PICKUP9 JOB9 10 InProgress UnAllocated Goal "y" "robotTwo" 03/25/2015
07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Allocated Goal "y" "robotTwo" 03/25/2015
07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Driving Goal "y" "robotTwo" 03/25/2015 07:47:21
None None 0
QueueUpdate: PICKUP9 JOB9 10 Completed None Goal "y" "robotTwo" 03/25/2015 07:47:21
03/25/2015 07:48:00 0

Example #4 – priority modify of an inProgress item:

queuePickup t
queuePickup goal "t" with priority 10 id PICKUP10 and jobId JOB10 successfully queued
QueueUpdate: PICKUP10 JOB10 10 Pending None Goal "t" "None" 03/25/2015 07:49:34 None
None 0
QueueUpdate: PICKUP10 JOB10 10 InProgress UnAllocated Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InProgress Allocated Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InProgress Driving Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
queuemodify pickup10 priority 13
queuemodify modifying id pickup10 priority 13
QueueUpdate: PICKUP10 JOB10 10 BeforeModify Driving Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InterruptedByModify None Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 AfterModify None Goal "t" "robotTwo" 03/25/2015 07:49:34
None None 0
QueueUpdate: PICKUP10 JOB10 13 Pending None Goal "t" "None" 03/25/2015 07:49:34 None
None 0
QueueUpdate: PICKUP10 JOB10 13 InProgress UnAllocated Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 InProgress Allocated Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 InProgress Driving Goal "t" "robotTwo" 03/25/2015
07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 Completed None Goal "t" "robotTwo" 03/25/2015 07:49:34
03/25/2015 07:49:46 0

Related Commands

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueMulti Command (shortcut: qm) on page 229

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 222

queueModify Command (shortcut: qmod)

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

queryFaults Command (shortcut: qf) on page 204

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 223

queueModifyLocal Command (shortcut: qmodl)

queueModifyLocal Command (shortcut: qmodl)
Allowsmodification of goal and priority for job segments in these job types:

l Dropoffs

l Swaps

Allowsmodification of segments in these states:

l Pending job segments

l InProgress jobs up to and including “InProgressDriving”, but not after

Syntax

queueModifyLocal<id> <type> <value>

Usage Considerations

This ARCL command is only available on the robot.

Because the queueModifyLocal command is only available on the robot, it assumes it applies only to the
items queued for that robot. This is a powerful difference (and feature) of the "local" version of the com-
mand.

ARAM Settings

In order to use this feature, you have to explicitly enable it in the MobilePlanner software, by setting the
EnterpriseQueuing argument in the Enterprise Features section of the Configuration > Enterprise tab.

Parameters

The queueModifyLocal arguments are described in the table below.

For details on the data types, see Data Types on page 48.

Parameter Definition

<id> Enter the string id for the job segment you wish tomodify (either
PICKUPxx or DROPOFFxx)

<type> Enter the type of modification. Valid types are:

l goal = the goal identification
l priority = the priority level

<value> Enter the value that corresponds with the type used:

For goal, enter the goal identification, for example: goal_1

For priority, enter the priority level, for example: 10

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 224

queueModifyLocal Command (shortcut: qmodl)

Responses

Returns (for goal modify of a pending item)

queuemodify modifying id <id> goal <”modifiedGoal”>
QueueUpdate: <id> <jobId> <priority> BeforeModify None Goal <goal> "None" <queuedDate>
<queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> AfterModify None Goal <modifiedGoal> "None"
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> Pending None Goal <modifiedGoal> "None" <queuedDate>
<queuedTime> None None 0

Returns (for priority modify of a pending item)

queuemodify modifying id <id> priority <modifiedpriority>
QueueUpdate: <id> <jobId> <priority> BeforeModify None Goal <goal> "None" <queuedDate>
<queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> AfterModify None Goal <goal> "None"
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> Pending None Goal <modifiedGoal> "None"
<queuedDate> <queuedTime> None None 0

Returns (for goal modify of an in-progress item)

queuemodify modifying id <id> goal <modifiedGoal>
QueueUpdate: <id> <jobId> <priority> BeforeModify Driving Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> InterruptedByModify None Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> AfterModify None Goal <modifiedGoal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> Pending None Goal <modifiedGoal> "None" <queuedDate>
<queuedTime> None None 0

Returns (for priority modify of an in-progress item)

queuemodify modifying id <id> priority <modifiedPriority>
QueueUpdate: <id> <jobId> <priority> BeforeModify Driving Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <priority> InterruptedByModify None Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> AfterModify None Goal <goal> <robot>
<queuedDate> <queuedTime> None None 0
QueueUpdate: <id> <jobId> <modifiedPriority> Pending None Goal <goal> "None" <queuedDate>
<queuedTime> None None 0

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

Details

The queueModifyLocal command allowsmodification of goal or priority values for job segments in these job
types:

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 225

queueModifyLocal Command (shortcut: qmodl)

l Dropoffs
l Swaps

It allowsmodification of segments in these states:

l Pending job segments
l InProgress jobs up to and including “InProgress Driving”, but not after

Changing the priority for the first segment in a jobmay change the order in which it gets assigned.
Changing the priority of other segments in the job will never change the order in which the job is assigned.

The queue time for a job will never be changed as a result of a queueModify command.

Changing the shared goal in a swapwill break the link between the two jobs. Changing the other goals in
the swapwill not break the link.

Modified jobs will be candidates for swaps. The linking would occur immediately following the modify.

Examples

Example #1 – goal modify of a pending item:

queuePickup t
queuePickup goal "t" with priority 10 id PICKUP5 and jobId JOB5 successfully queued
QueueUpdate: PICKUP5 JOB5 10 Pending None Goal "t" "None" 03/25/2015 07:36:58 None None 0
queuemodify pickup5 goal w20
queuemodify modifying id pickup5 goal "w20"
QueueUpdate: PICKUP5 JOB5 10 BeforeModify None Goal "t" "None" 03/25/2015 07:36:58 None None 0
QueueUpdate: PICKUP5 JOB5 10 AfterModify None Goal "w20" "None" 03/25/2015 07:36:58 None None 0
QueueUpdate: PICKUP5 JOB5 10 Pending None Goal "w20" "None" 03/25/2015 07:36:58 None None 0

queueDropoff y
queueDropoff attempting to queue goal "y" using default priority
queueDropoff goal "y" with priority 20 id DROPOFF6 and jobId JOB6 successfully queued
QueueUpdate: DROPOFF6 JOB6 20 Pending None Goal "y" "robotOne" 03/25/2015 07:38:09 None None 0
queuemodifylocal dropoff6 goal x
queuemodifylocal modifying id dropoff6 goal "x"
QueueUpdate: DROPOFF6 JOB6 20 BeforeModify None Goal "y" "robotOne" 03/25/2015 07:38:09 None None 0
QueueUpdate: DROPOFF6 JOB6 20 AfterModify None Goal "x" "robotOne" 03/25/2015 07:38:09 None None 0
QueueUpdate: DROPOFF6 JOB6 20 Pending None Goal "x" "robotOne" 03/25/2015 07:38:09 None None 0

Example #2 – priority modify of a pending item:

queueDropoff w20
queueDropoff attempting to queue goal "w20" using default priority
queueDropoff goal "w20" with priority 20 id DROPOFF7 and jobId JOB7 successfully queued
QueueUpdate: DROPOFF7 JOB7 20 Pending None Goal "w20" "robotOne" 03/25/2015 07:39:01 None None 0
queuemodifylocal dropoff7 priority 22
queuemodifylocal modifying id dropoff7 priority 22
QueueUpdate: DROPOFF7 JOB7 20 BeforeModify None Goal "w20" "robotOne" 03/25/2015 07:39:01 None None 0
QueueUpdate: DROPOFF7 JOB7 22 AfterModify None Goal "w20" "robotOne" 03/25/2015 07:39:01 None None 0
QueueUpdate: DROPOFF7 JOB7 22 Pending None Goal "w20" "robotOne" 03/25/2015 07:39:01 None None 0

queuePickup v
queuePickup goal "v" with priority 10 id PICKUP8 and jobId JOB8 successfully queued

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 226

queueModifyLocal Command (shortcut: qmodl)

QueueUpdate: PICKUP8 JOB8 10 Pending None Goal "v" "None" 03/25/2015 07:40:24 None None 0
queuemodify pickup8 priority 6
queuemodify modifying id pickup8 priority 6
QueueUpdate: PICKUP8 JOB8 10 BeforeModify None Goal "v" "None" 03/25/2015 07:40:24 None None 0
QueueUpdate: PICKUP8 JOB8 6 AfterModify None Goal "v" "None" 03/25/2015 07:40:24 None None 0
QueueUpdate: PICKUP8 JOB8 6 Pending None Goal "v" "None" 03/25/2015 07:40:24 None None 0

Example #3 – goal modify of an inProgress item:

queuePickup x
queuePickup goal "x" with priority 10 id PICKUP9 and jobId JOB9 successfully queued
QueueUpdate: PICKUP9 JOB9 10 Pending None Goal "x" "None" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress UnAllocated Goal "x" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Allocated Goal "x" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Driving Goal "x" "robotTwo" 03/25/2015 07:47:21 None None 0
queuemodify pickup9 goal y
queuemodify modifying id pickup9 goal "y"
QueueUpdate: PICKUP9 JOB9 10 BeforeModify Driving Goal "x" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InterruptedByModify None Goal "x" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 AfterModify None Goal "y" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 Pending None Goal "y" "None" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress UnAllocated Goal "y" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Allocated Goal "y" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 InProgress Driving Goal "y" "robotTwo" 03/25/2015 07:47:21 None None 0
QueueUpdate: PICKUP9 JOB9 10 Completed None Goal "y" "robotTwo" 03/25/2015 07:47:21 03/25/2015 07:48:00 0

Example #4 – priority modify of an inProgress item:

queuePickup t
queuePickup goal "t" with priority 10 id PICKUP10 and jobId JOB10 successfully queued
QueueUpdate: PICKUP10 JOB10 10 Pending None Goal "t" "None" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InProgress UnAllocated Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InProgress Allocated Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InProgress Driving Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
queuemodify pickup10 priority 13
queuemodify modifying id pickup10 priority 13
QueueUpdate: PICKUP10 JOB10 10 BeforeModify Driving Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 10 InterruptedByModify None Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 AfterModify None Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 Pending None Goal "t" "None" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 InProgress UnAllocated Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 InProgress Allocated Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 InProgress Driving Goal "t" "robotTwo" 03/25/2015 07:49:34 None None 0
QueueUpdate: PICKUP10 JOB10 13 Completed None Goal "t" "robotTwo" 03/25/2015 07:49:34 03/25/2015 07:49:46 0

Related Commands

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 227

queueModifyLocal Command (shortcut: qmodl)

queueMulti Command (shortcut: qm) on page 229

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

queryFaults Command (shortcut: qf) on page 204

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 228

queueMulti Command (shortcut: qm)

queueMulti Command (shortcut: qm)
Queues the robot for multiple pickups and dropoffs at multiple goals.

Syntax

queueMulti <number of goals> <number of fields per goal> <goal1> <goal1 args> <goal2> <goal2
args> … <goalN> <goalN args> [jobid]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

ARAM Settings

In order to use this feature, you have to explicitly enable it in the MobilePlanner software, by setting the
EnterpriseQueuing argument in the Enterprise Features section of the Configuration > Enterprise tab.

Parameters

The queueMulti arguments are described in the table below.

For details on the data types, see Data Types on page 48.

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 229

queueMulti Command (shortcut: qm)

Parameter Definition

number of goals Enter the number of goals where you want the mobile robot to go.
Up to 50 goals are supported.

number of fields per goal Enter the number of fields to be used for all goals. Two fields are sup-
ported, in this order: <pickup|dropoff> <priority>.

goal1 Enter the name of the first goal.

goal1 args Enter the arguments associated with the first goal in the form:

<pickup|dropoff> <priority or “default”>

The first goal MUST be a pickup. All subsequent goals can be either
pickups or dropoffs.

The priority is an integer value that represents the priority of the
job segment. The higher the number, the sooner the Enterprise
Manager is going to service the item. The default priority is 10,
which can be changed in MobilePlanner. Only the priority of the first
segment in the queueMulti commandwill have an impact on how
soon the job is assigned to a robot.

goalN Enter the name of the Nth goal.

goalN args Enter the arguments associated with the Nth goal.

jobId Enter an optional identifier for the specified job. You can use a com-
bination of string characters and integers. The jobId is helpful in
tracking the job. If nothing is entered, ARCL generates a random
jobId.

Responses

The command returns:

QueueMulti: goal "x" with priority 10 id PICKUP1 and jobid JOB1 successfully queued
QueueMulti: goal <"goal1"> with priority <goal1_priority> id <PICKUPid_or_DROPOFFid>
jobid <jobId> successfully queued
QueueMulti: goal <"goal2"> with priority <goal2_priority> id <PICKUPid_or_DROPOFFid>
jobid <jobId> successfully queued and linked to <goal1_PICKUPid_or_DROPOFFid>
:
:
QueueMulti: goal <"goaln"> with priority <goaln_priority> id <PICKUPid_or_DROPOFFid>
jobid <jobId> successfully queued and linked to <goal(n-1)_PICKUPid_or_DROPOFFid>
EndQueueMulti

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 230

queueMulti Command (shortcut: qm)

Details

The queueMulti command tells the mobile robot to go tomultiple goals, to make pickups and dropoffs.

Examples

The following example shows a queuedropoff at goal 1.

Example #1 – Using Default job id
queuemulti 4 2 x pickup 10 y pickup 19 z dropoff 20 t dropoff 20
QueueMulti: goal "x" with priority 10 id PICKUP1 and jobid JOB1 successfully queued
QueueMulti: goal "y" with priority 19 id PICKUP2 and jobid JOB1 successfully queued and
linked to PICKUP1
QueueMulti: goal "z" with priority 20 id DROPOFF3 and jobid JOB1 successfully queued and
linked to PICKUP2
QueueMulti: goal "t" with priority 20 id DROPOFF4 and jobid JOB1 successfully queued and
linked to DROPOFF3
EndQueueMulti
QueueUpdate: PICKUP1 JOB1 10 Pending None Goal "x" "None" 08/15/2013 06:02:59 None None 0
QueueUpdate: PICKUP2 JOB1 19 Pending ID_PICKUP1 Goal "y" "None" 08/15/2013 06:02:59 None
None 0
QueueUpdate: DROPOFF3 JOB1 20 Pending ID_PICKUP2 Goal "z" "None" 08/15/2013 06:02:59 None
None 0
QueueUpdate: DROPOFF4 JOB1 20 Pending ID_DROPOFF3 Goal "t" "None" 08/15/2013 06:02:59
None None 0
QueueUpdate: PICKUP1 JOB1 10 InProgress UnAllocated Goal "x" "Bullwinkle (.53)"
08/15/2013 06:02:59 None None 0
QueueUpdate: PICKUP1 JOB1 10 InProgress Allocated Goal "x" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: PICKUP1 JOB1 10 InProgress Driving Goal "x" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: PICKUP1 JOB1 10 Completed None Goal "x" "Bullwinkle (.53)" 08/15/2013
06:02:59 08/15/2013 06:03:20 0
QueueUpdate: PICKUP2 JOB1 19 InProgress UnAllocated Goal "y" "Bullwinkle (.53)"
08/15/2013 06:02:59 None None 0
QueueUpdate: PICKUP2 JOB1 19 InProgress Allocated Goal "y" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: PICKUP2 JOB1 19 InProgress Driving Goal "y" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: PICKUP2 JOB1 19 Completed None Goal "y" "Bullwinkle (.53)" 08/15/2013
06:02:59 08/15/2013 06:03:33 0
QueueUpdate: DROPOFF3 JOB1 20 InProgress UnAllocated Goal "z" "Bullwinkle (.53)"
08/15/2013 06:02:59 None None 0
QueueUpdate: DROPOFF3 JOB1 20 InProgress Allocated Goal "z" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: DROPOFF3 JOB1 20 InProgress Before Goal "z" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: DROPOFF3 JOB1 20 InProgress Driving Goal "z" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: DROPOFF3 JOB1 20 InProgress After Goal "z" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: DROPOFF3 JOB1 20 Completed None Goal "z" "Bullwinkle (.53)" 08/15/2013
06:02:59 08/15/2013 06:03:47 0
QueueUpdate: DROPOFF4 JOB1 20 InProgress UnAllocated Goal "t" "Bullwinkle (.53)"
08/15/2013 06:02:59 None None 0

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 231

queueMulti Command (shortcut: qm)

QueueUpdate: DROPOFF4 JOB1 20 InProgress Allocated Goal "t" "Bullwinkle (.53)"
08/15/2013 06:02:59 None None 0
QueueUpdate: DROPOFF4 JOB1 20 InProgress Driving Goal "t" "Bullwinkle (.53)" 08/15/2013
06:02:59 None None 0
QueueUpdate: DROPOFF4 JOB1 20 Completed None Goal "t" "Bullwinkle (.53)" 08/15/2013
06:02:59 08/15/2013 06:04:03 0

Related Commands

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 232

queuePickup Command (shortcut: qp)

queuePickup Command (shortcut: qp)
Calls any available robot for a pick up request.

Syntax

queuePickup <goalName> [priority or "default"] [jobId]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

ARAM Settings

In order to use this feature, you have to explicitly enable it in the MobilePlanner software, by setting the
EnterpriseQueuing argument in the Enterprise Features section of the Configuration > Enterprise tab.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

goalName Enter the name of the goal where you want the mobile robot to go
for the pickup.

priority An optional integer value that represents the priority of the pickup
request. The higher the number, the sooner Enterprise Manager is
going to service the item. The default priority is 10, which can be
changed in MobilePlanner.

jobId An optional identifier for the specified job. You can use a com-
bination of string characters and integers. The jobId is helpful in
tracking the job. If nothing is entered, ARCL generates a random
jobId.

Responses

The command returns the following information:

queuepickup goal "goalName" with priority [priority] id (id) and jobId [jobid] suc-
cessfully queued

Assuming the commandwas successful, the status of the robot is displayed:

QueueUpdate: <id> <jobId> <priority> <status = Pending> <substatus = None> Goal
<”goalName”> <assigned robotName = None> <queuedDate> <queuedTime> <completedDate =
None> <completedTime = None> <failedCount>

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 233

queuePickup Command (shortcut: qp)

QueueUpdate: <id> <jobId> <priority> <status = InProgress> <substatus = None> Goal
<”goalName”> <”robotName”> <queuedDate> <queuedTime> <completedDate = None> <com-
pletedTime = None> <failedCount>
QueueUpdate: <id> <jobId> <priority> <status = Completed> <substatus = None> Goal
<”goalName”> <”robotName”> <queuedDate> <queuedTime> <completedDate> <completedTime>
<failedCount>

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

Details

The queuePickup command calls any available robot for a pick up request. When the job is at the top of the
queue, the mobile robot drives to the specified goal.

If multiple robots are available for the pickup request, the Enterprise Manager determines which robot
answers the request based on such factors as which robot is closest to the goal, how long it has been idle,
and its charge state. You can also enter a priority value: the higher the number, the higher the priority.

Examples

The following example shows a queuePickup at goal z with priority 11 and job_id xyz.

queuepickup z 11 xyz
queuepickup goal "z" with priority 11, id PICKUP13 and job_id xyz successfully queued
QueueUpdate: PICKUP13 xyz 11 Pending None Goal "z" none 12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress UnAllocated Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress Allocated Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress BeforePickup Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress BeforeEvery Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress Before Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress Driving Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress After Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress AfterEvery Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 InProgress AfterPickup Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 None None 0
QueueUpdate: PICKUP13 xyz 11 Completed None Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 12/19/2011 06:54:34 0

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 234

queuePickup Command (shortcut: qp)

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 235

queuePickupDropoff Command (shortcut: qpd)

queuePickupDropoff Command (shortcut: qpd)
Queues a pick-up and drop-off request for any available robot.

Syntax

queuePickupDropoff<goal1Name> <goal2Name> [priority1 or "default"] [priority2 or "default"]
[jobId]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

goal1Name Enter the name of the goal where you want the mobile robot to go
for the pickup.

goal2Name Enter the name of the goal where you want the mobile robot to go
for the dropoff.

priority1 An optional integer value that represents the priority of the pickup
request. The higher the number, the sooner Enterprise Manager is
going to service the item. The default priority is 10, which can be
changed in MobilePlanner.

priority2 An optional integer value that represents the priority of the dropoff
request. The higher the number, the sooner Enterprise Manager is
going to service the item. The default priority is 20, which can be
changed in MobilePlanner.

jobId An optional identifier for the specified job. You can use a com-
bination of string characters and integers. The jobId is helpful in
tracking the job. If nothing is entered, ARCL generates a random
jobId.

Responses

The command returns the following information:

queuepickupdropoff goals <"goal1"> and <"goal2"> with priorities <priority1> and <pri-
ority2> ids <PICKUPid> and <DROPOFFid> jobId <jobId> successfully queued and linked to
jobId <jobid>

The PICKUPid and DROPOFFid are assigned by the system.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 236

queuePickupDropoff Command (shortcut: qpd)

Assuming the commandwas successful, the status is displayed as follows:

QueueUpdate: <id> <jobId> <priority> <status=Pending> <substatus=None> Goal <”goal1”>
<robotName> <queued date> <queued time> <completed date=None> <completed time=None>
<failed count>
QueueUpdate: <id> <jobId> <priority> <status=Pending> <substatus=ID_<id>> Goal <”goal2”>
<robotName> <queued date> <queued time> <completed date=None> <completed time=None>
<failed count>

QueueUpdate: <id> <jobId> <priority> <status=InProgress> <substatus=UnAllocated> Goal
<”goal1”> <robotName> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=InProgress> <substatus=Allocated> Goal
<”goal1”> <robotName> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=InProgress> <substatus=Driving> Goal
<”goal1”> <robotName> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=Completed> <substatus=None> Goal <”goal1”>
<robotName> <queued date> <queued time> <completed date> <completed time> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=InProgress> <substatus=UnAllocated> Goal
<”goal2”> <robotName> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=InProgress> <substatus=Allocated> Goal
<”goal2”> <robotName> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=InProgress> <substatus=Driving> Goal
<”goal2”> <robotName> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>
QueueUpdate: <id> <jobId> <priority> <status=Completed> <substatus=None> Goal <”goal2”>
<robotName> <queued date> <queued time> <completed date> <completed time> <failed count>

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

Details

The queuePickupDropoff command calls any available robot for a pick-up request and then tells it to go to a
specific goal for a dropoff. You must specify the goal names. You can optionally specify the priorities for each
goal and the job identifier. However, note that there is no robot specification parameter in this command—
it automatically chooses the most appropriate robot in the fleet, as determined by the selection criteria and
task requirements.

Examples

The following example shows the queuepickupdropoff commandwith priority1 and priority2 values and a
job identifier.

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 237

queuePickupDropoff Command (shortcut: qpd)

queuepickupdropoff <PICKUPgoal_name> <DROPOFFgoal_name> [PICKUPpriority] [DROPOFFpri-
ority] [job_id]

Returns:

queuepickupdropoff goals <"PICKUPgoal"> and <"DROPOFFgoal"> with priorities <PICKUPpri-
ority> and <DROPOFFpriority> ids <PICKUPid> and <DROPOFFid> job_id <jobid> successfully
queued

QueueUpdate: <id> <job_id> <priority> <status=Pending> <substatus=None> Goal <”goal_
name”> <robot_name> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>

QueueUpdate: <id> <job_id> <priority> <status=InProgress> <substatus=None> Goal <”goal_
name”> <robot_name> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>

QueueUpdate: <id> <job_id> <priority> <status=Completed> <substatus=None> Goal <”goal_
name”> <robot_name> <queued date> <queued time> <completed date> <completed time>
<failed count>

QueueUpdate: <id> <job_id> <priority> <status=InProgress> <substatus=None> Goal <”goal_
name”> <robot_name> <queued date> <queued time> <completed date=None> <completed time-
e=None> <failed count>

QueueUpdate: <id> <job_id> <priority> <status=Completed> <substatus=None> Goal <”goal_
name”> <robot_name> <queued date> <queued time> <completed date> <completed time>
<failed count>

The following example shows the queuepickupdropoff command being used to swap the payload on the
robot:

queuepickupdropoff x y
queuepickupdropoff goals "x" and "y" with priorities 10 and 20 ids PICKUP12 and
DROPOFF13 job_id JOB12 successfully queued
QueueUpdate: PICKUP12 JOB12 10 Pending None Goal "x" "None" 08/16/2012 14:32:54 None
None 0
QueueUpdate: DROPOFF13 JOB12 20 Pending None Goal "y" "None" 08/16/2012 14:32:54 None
None 0
QueueUpdate: PICKUP12 JOB12 10 InProgress UnAllocated Goal "x" "Lynx1" 08/16/2012
14:32:54 None None 0
queuepickupdropoff y t
queuepickupdropoff goals "y" and "t" with priorities 10 and 20 ids PICKUP14 and
DROPOFF15 job_id JOB14 successfully queued and linked to job_id JOB12
QueueUpdate: PICKUP14 JOB14 10 Pending None Goal "y" "Lynx1" 08/16/2012 14:33:01 None
None 0
QueueUpdate: DROPOFF15 JOB14 20 Pending None Goal "t" "Lynx1" 08/16/2012 14:33:01 None
None 0
QueueUpdate: PICKUP12 JOB12 10 InProgress Allocated Goal "x" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: PICKUP12 JOB12 10 InProgress Driving Goal "x" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: PICKUP12 JOB12 10 Completed None Goal "x" "Lynx1" 08/16/2012 14:32:54

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 238

queuePickupDropoff Command (shortcut: qpd)

08/16/2012 14:33:15 0
QueueUpdate: DROPOFF13 JOB12 20 InProgress UnAllocated Goal "y" "Lynx1" 08/16/2012
14:32:54 None None 0
QueueUpdate: DROPOFF13 JOB12 20 InProgress Allocated Goal "y" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: DROPOFF13 JOB12 20 InProgress Driving Goal "y" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: DROPOFF13 JOB12 20 Completed None Goal "y" "Lynx1" 08/16/2012 14:32:54
08/16/2012 14:33:27 0
QueueUpdate: PICKUP14 JOB14 10 Completed None Goal "y" "Lynx1" 08/16/2012 14:33:01
08/16/2012 14:33:27 0
QueueUpdate: DROPOFF15 JOB14 20 InProgress UnAllocated Goal "t" "Lynx1" 08/16/2012
14:33:01 None None 0
QueueUpdate: DROPOFF15 JOB14 20 InProgress Allocated Goal "t" "Lynx1" 08/16/2012 14:33:01
None None 0
QueueUpdate: DROPOFF15 JOB14 20 InProgress Driving Goal "t" "Lynx1" 08/16/2012 14:33:01
None None 0
QueueUpdate: DROPOFF15 JOB14 20 Completed None Goal "t" "Lynx1" 08/16/2012 14:33:01
08/16/2012 14:33:35 0

queuepickupdropoff x y
queuepickupdropoff goals "x" and "y" with priorities 10 and 20 ids PICKUP12 and DROPOFF13
job_id JOB12 successfully queued
QueueUpdate: PICKUP12 JOB12 10 Pending None Goal "x" "None" 08/16/2012 14:32:54 None None
0
QueueUpdate: DROPOFF13 JOB12 20 Pending ID_PICKUP12 Goal "y" "None" 08/16/2012 14:32:54
None None 0
QueueUpdate: PICKUP12 JOB12 10 InProgress UnAllocated Goal "x" "Lynx1" 08/16/2012
14:32:54 None None 0
queuepickupdropoff y t
queuepickupdropoff goals "y" and "t" with priorities 10 and 20 ids PICKUP14 and DROPOFF15
job_id JOB14 successfully queued and linked to job_id JOB12
QueueUpdate: PICKUP14 JOB14 10 Pending ID_DROPOFF13 Goal "y" "Lynx1" 08/16/2012 14:33:01
None None 0
QueueUpdate: DROPOFF15 JOB14 20 Pending ID_PICKUP14 Goal "t" "Lynx1" 08/16/2012 14:33:01
None None 0
QueueUpdate: PICKUP12 JOB12 10 InProgress Allocated Goal "x" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: PICKUP12 JOB12 10 InProgress Driving Goal "x" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: PICKUP12 JOB12 10 Completed None Goal "x" "Lynx1" 08/16/2012 14:32:54
08/16/2012 14:33:15 0
QueueUpdate: DROPOFF13 JOB12 20 InProgress UnAllocated Goal "y" "Lynx1" 08/16/2012
14:32:54 None None 0
QueueUpdate: DROPOFF13 JOB12 20 InProgress Allocated Goal "y" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: DROPOFF13 JOB12 20 InProgress Driving Goal "y" "Lynx1" 08/16/2012 14:32:54
None None 0
QueueUpdate: DROPOFF13 JOB12 20 Completed None Goal "y" "Lynx1" 08/16/2012 14:32:54
08/16/2012 14:33:27 0
QueueUpdate: PICKUP14 JOB14 10 Completed None Goal "y" "Lynx1" 08/16/2012 14:33:01
08/16/2012 14:33:27 0
QueueUpdate: DROPOFF15 JOB14 20 InProgress UnAllocated Goal "t" "Lynx1" 08/16/2012
14:33:01 None None 0
QueueUpdate: DROPOFF15 JOB14 20 InProgress Allocated Goal "t" "Lynx1" 08/16/2012 14:33:01

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 239

queuePickupDropoff Command (shortcut: qpd)

None None 0
QueueUpdate: DROPOFF15 JOB14 20 InProgress Driving Goal "t" "Lynx1" 08/16/2012 14:33:01
None None 0
QueueUpdate: DROPOFF15 JOB14 20 Completed None Goal "t" "Lynx1" 08/16/2012 14:33:01
08/16/2012 14:33:35 0

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 240

queueQuery Command (shortcut: qq)

queueQuery Command (shortcut: qq)
Shows the job status of the queue by type or value.

Items will be displayed by priority. If, for example, dropoff priority is 20 and pickup priority is 10, then
dropoff items will be displayed first, followed by pickup items.

Syntax

queueQuery <type> <value> [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

type Enter the type of job. Valid types are:

l id = the pickup or dropoff identification
l jobId = the job identification
l robotName = the robot name
l status = the item status.

value Enter the value that corresponds with the type used:

For id, enter the pickup or dropoff identification, for example:
PICKUP2

For jobid, enter the job identification, for example: JOB2

For robotname, enter the robot name, for example: robot_34

For status, enter one of the following values:

l inprogress = queries a job with an InProgress status.
l pending = queries a job with a Pending status.
l interrupted = queries a job with an Interrupted status.
l completed = queries a job with a Completed status.
l cancelled = queries a job with a Cancelled status.
l failed = queries a job with a Failed status.

echoString An optional string that is appended to each line of the results.

Responses

The command returns the following for a pending item:

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 241

queueQuery Command (shortcut: qq)

QueueQuery: <id> <jobId> <priority> <status> <substatus> Goal <"goalName"> <robotName>
<queued date> <queued time> <completed date> <completed time> <echostring> <failed
count>
EndQueueQuery

The returned items will be displayed by priority, as shown in the Examples. If, for example, dropoff priority
is 20 and pickup priority is 10, the dropoff items will be displayed before the pickup items.

Details

The queueQuery command is used to view the status of the job queue. The queue can be queried by type
(such as the robot name or job identification) or by the job status.

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

An optional string can be specified, which will be appended to each line of the results.

For details on the status conditions, see Status Conditions on page 51.

Examples

The following example shows the status of the completed jobs in the queue.

queuequery status completed xyz
QueueQuery: DROPOFF18 y4rt 22 Completed None Goal "x" “MT-490” 12/19/2011 07:07:53
12/19/2011 07:08:07 xyz 0
QueueQuery: DROPOFF16 abc 20 Completed None Goal "x" “MT-490” 12/19/2011 07:06:00
12/19/2011 07:06:16 xyz 0
QueueQuery: DROPOFF17 JOB17 20 Completed None Goal "z" “MT-490” 12/19/2011 07:06:21
12/19/2011 07:06:35 xyz 0
QueueQuery: DROPOFF19 yyy 20 Completed None Goal "x" “MT-490” 12/19/2011 07:08:49
12/19/2011 07:08:49 xyz 0
QueueQuery: DROPOFF20 yyy 20 Completed None Goal "x" “MT-490” 12/19/2011 07:09:08
12/19/2011 07:09:09 xyz 1
QueueQuery: DROPOFF21 JOB21 20 Completed None Goal "x" “MT-490” 12/19/2011 07:09:33
12/19/2011 07:09:34 xyz 0
QueueQuery: PICKUP12 xyz 11 Completed None Goal "t" “MT-490” 12/19/2011 06:53:51
12/19/2011 06:54:02 xyz 5
QueueQuery: PICKUP13 xyz 11 Completed None Goal "z" “Adept_Telepresence_Robot”
12/19/2011 06:54:18 12/19/2011 06:54:34 xyz 0
EndQueueQuery

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 242

queueQuery Command (shortcut: qq)

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 243

queueQueryLocal Command (shortcut: qql)

queueQueryLocal Command (shortcut: qql)
Shows the job status of the robot queue by type or value.

Items will be displayed by priority. If, for example, dropoff priority is 20 and pickup priority is 10, then
dropoff items will be displayed first, followed by pickup items.

Syntax

queueQueryLocal <type> <value> [echoString]

Because the queueQueryLocal command is only available on the robot, it assumes it applies only to the
items queued for that robot. This is a powerful difference (and feature) of the "local" version of the com-
mand. So, for example, a "queueQuerylLocal status inprogress" commandwould allow you to query, based
on inprogress status, all jobs queued for that particular robot.

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

type Enter the type of job. Valid types are:

l id = the pickup or dropoff identification
l jobId = the job identification
l robotName = the robot name
l status = the item status.

value Enter the value that corresponds with the type used:

For id, enter the pickup or dropoff identification, for example:
PICKUP2

For jobid, enter the job identification, for example: JOB2

For robotname, enter the robot name, for example: robot_34

For status, enter one of the following values:

l inprogress = queries a job with an InProgress status.
l pending = queries a job with a Pending status.
l interrupted = queries a job with an Interrupted status.
l completed = queries a job with a Completed status.
l cancelled = queries a job with a Cancelled status.
l failed = queries a job with a Failed status.

echoString An optional string that is appended to each line of the results.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 244

queueQueryLocal Command (shortcut: qql)

Responses

The command returns the following for a pending item:

QueueQuery: <id> <jobId> <priority> <status> <substatus> Goal <"goalName"> <robotName>
<queued date> <queued time> <completed date> <completed time> <echostring> <failed count>
EndQueueQuery

The returned items will be displayed by priority, as shown in the Examples. If, for example, dropoff priority
is 20 and pickup priority is 10, the dropoff items will be displayed before the pickup items.

Details

The queueQuery command is used to view the status of the job queue. The queue can be queried by type
(such as the robot name or job identification) or by the job status.

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

An optional string can be specified, which will be appended to each line of the results.

For details on the status conditions, see Status Conditions on page 51.

Examples

The following example shows the status of the completed jobs in the queue.

queuequery status completed xyz
QueueQuery: DROPOFF18 y4rt 22 Completed None Goal "x" “MT-490” 12/19/2011 07:07:53
12/19/2011 07:08:07 xyz 0
QueueQuery: DROPOFF16 abc 20 Completed None Goal "x" “MT-490” 12/19/2011 07:06:00
12/19/2011 07:06:16 xyz 0
QueueQuery: DROPOFF17 JOB17 20 Completed None Goal "z" “MT-490” 12/19/2011 07:06:21
12/19/2011 07:06:35 xyz 0
QueueQuery: DROPOFF19 yyy 20 Completed None Goal "x" “MT-490” 12/19/2011 07:08:49
12/19/2011 07:08:49 xyz 0
QueueQuery: DROPOFF20 yyy 20 Completed None Goal "x" “MT-490” 12/19/2011 07:09:08
12/19/2011 07:09:09 xyz 1
QueueQuery: DROPOFF21 JOB21 20 Completed None Goal "x" “MT-490” 12/19/2011 07:09:33
12/19/2011 07:09:34 xyz 0
QueueQuery: PICKUP12 xyz 11 Completed None Goal "t" “MT-490” 12/19/2011 06:53:51
12/19/2011 06:54:02 xyz 5
QueueQuery: PICKUP13 xyz 11 Completed None Goal "z" “Adept_Telepresence_Robot” 12/19/2011
06:54:18 12/19/2011 06:54:34 xyz 0

EndQueueQuery

Related Commands

queryFaults Command (shortcut: qf) on page 204

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 245

queueQueryLocal Command (shortcut: qql)

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 246

queueShow Command (shortcut: qs)

queueShow Command (shortcut: qs)
Shows the status of the last 11 jobs in the queue, including any jobs assigned to the robots and the status
of each job. Oldest jobs are displayed first.

Syntax

queueShow [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Shows all jobs and all robots. To look at a specific job, use queueQuery. To look at a specific robot, use
queueShowRobot.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

echoString An optional string that is appended to each line of the results.

Responses

The command returns the following information:

QueueRobot: <robotName> <robotStatus> <robotSubstatus> <echoString>
QueueShow: <id> <jobId> <priority> <status> <substatus> Goal <"goalName"> <”robotName”>
<queued date> <queued time> <completed date> <completed time> <echoString> <failed count>
EndQueueShow

Details

The queueShow command provides a listing of all robots connected to the Enterprise Manager, and all jobs
in the queue including those that are pending, interrupted, or are currently assigned to the robots. You do
not specify a robot with this command. Instead, it lists the information for all robots. If you wish to look at a
specific robot, use the queueShowRobot command. For details, see the queueShowRobot Command
(shortcut: qsr) on page 251. If you wish to look at a specific job, use the queueQuery command. For details,
see the queueQuery Command (shortcut: qq) on page 241.

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

An optional string can be specified, which will be appended to each line of the results.

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 247

queueShow Command (shortcut: qs)

Examples
queueshow
QueueRobot: "21" InProgress Driving ""
QueueRobot: "22" Available Available ""
QueueRobot: "23" Available Available ""
QueueRobot: "24" Available Available ""
QueueRobot: "25" Available Available ""
QueueRobot: "26" Available Available ""
QueueShow: PICKUP3 JOB3 10 Completed None Goal "1" "21" 11/14/2012 11:49:23 11/14/2012
11:49:23 "" 0
QueueShow: PICKUP4 JOB4 10 InProgress Driving Goal "7" "21" 11/14/2012 11:49:34 None
None "" 0
EndQueueShow

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShowCompleted Command (shortcut: qsc) on page 249

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 248

queueShowCompleted Command (shortcut: qsc)

queueShowCompleted Command (shortcut: qsc)
Shows the jobs in the queue with a status of Completed, oldest first.

Syntax

queueshowcompleted [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

Shows only jobs with a status of Completed. To look at a specific job, use queueQuery. To look at a specific
robot, use queueShowRobot.

The configuration parameter maxNumberOfCompletedItems, which has a default of 100, limits the num-
ber of completed jobs that will be kept in the queue.

The configuration parameter DeleteCompletedItemsMinutes, which has a default of 60, determines how
long completed jobs will be kept in the queue. Jobs older than this will be deleted from the queue, and can-
not be viewed.

Either of these two parameters can limit the number of jobs in the queue that are available for viewingwith
the queueShowCompleted command.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

echoString An optional string that is appended to each line of the results.

Returns

The command returns the following information:

QueueShow: <id> <jobId> <priority> <status> <substatus> Goal <"goalName"> <”robotName”>
<queued date> <queued time> <completed date> <completed time> <echoString> <failed count>
EndQueueShowCompleted

Details

The queueShowCompleted command provides a listing of the jobs in the queue that are Completed, oldest
first. You do not specify a robot with this command. Instead, it lists the information for all robots. If you
wish to look at a specific robot, use the queueShowRobot command. For details, see the queueShowRobot
Command (shortcut: qsr) on page 251. If you wish to look at a specific job, use the queueQuery command.
For details, see the queueQuery Command (shortcut: qq) on page 241.

Adept ARCL Reference Guide, Updated: 9:26:55 AM

Page 249

queueShowCompleted Command (shortcut: qsc)

The reported jobId was either provided as part of the request, or was autogenerated by the Enterprise Man-
ager software.

All failed counts are based on the jobId.

For details on the status conditions, see Status Conditions on page 51.

An optional string can be specified, which will be appended to each line of the results.

Examples
queueshowcompleted

QueueShow: PICKUP19 JOB19 10 Completed None Goal "t" "Bullwinkle (.53)" 05/06/2013
05:55:33 05/06/2013 05:56:02 "" 0
QueueShow: PICKUP21 JOB21 10 Completed None Goal "t" "guiabot_2010_09_20" 05/06/2013
06:00:21 05/06/2013 06:00:42 "" 0
QueueShow: PICKUP22 JOB22 10 Completed None Goal "t" "Bullwinkle (.53)" 05/06/2013
06:00:32 05/06/2013 06:01:05 "" 0
QueueShow: PICKUP23 JOB23 10 Completed None Goal "t" "guiabot_2010_09_20" 05/06/2013
06:01:03 05/06/2013 06:01:23 "" 0
EndQueueShowCompleted

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowRobot Command (shortcut: qsr) on page 251

queueShowRobot Command (shortcut: qsr) on page 251

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 250

queueShowRobot Command (shortcut: qsr)

queueShowRobot Command (shortcut: qsr)
Shows the status and substatus of all robots (or, optionally, a specific robot) connected to the Enterprise
Manager.

Syntax

queueShowRobot [robotName or "default"] [echoString]

Usage Considerations

This ARCL command is available only on the Enterprise Manager.

This command does not return any job information; to view the queue and job information, use the
queueShow command from ARCL on the Enterprise Manager.

Parameters

The command parameters are described in the following table.

For details on the data types, see Data Types on page 48.

Parameter Definition

robotName Enter the name of the robot. To view all the robots connected to the
Enterprise Manager, omit this parameter or enter "default".

echoString An optional string that is appended to each line of the results.
Requires a value in the previous parameter.

Responses

The command returns the following:

QueueRobot: "robotName" robotStatus robotSubstatus echoString
EndQueueShowRobot

For details on the status conditions, see Status Conditions on page 51.

Details

The queueShowRobot command displays the status of the robots currently connected to the Enterprise
Manager. Optionally, this command allows you to query a specific robot name, versus the queueShow com-
mand, which returns the queue status for all robots alongwith queue information.

This command does not return the job status for jobs currently in progress. To view that information, use
the queueShow command. For details, see queueShow Command (shortcut: qs) on page 247.

An optional string can be specified, which will be appended to each line of the results.

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 251

queueShowRobot Command (shortcut: qsr)

Examples

The following example shows the status and substatus of robot 31:

queueshowrobot 31
QueueRobot: "31" Available Available ""

The following example shows the status and substatus of all robots and includes an optional message
"echoit":

Queueshowrobot default echoit

QueueRobot: “Robot1” UnAvailable EStopPressed echoit
QueueRobot: “Robot2” UnAvailable Interrupted echoit
QueueRobot: “Robot3” UnAvailable InterruptedButNotYetIdle echoit
QueueRobot: “Robot4” Available Available echoit
QueueRobot: “Robot5” InProgress Driving echoit
QueueRobot: “Robot6” UnAvailable NotUsingEnterpriseManager echoit
QueueRobot: “Robot7” UnAvailable UnknownBatteryType echoit
QueueRobot: “Robot8” UnAvailable ForcedDocked echoit
QueueRobot: “Robot9” UnAvailable NotLocalized echoit
QueueRobot: "patrolbot" UnAvailable Fault_Driving_Application_faultName echoit

EndQueueShowRobot

Related Commands

queryFaults Command (shortcut: qf) on page 204

queueCancel Command (shortcut: qc) on page 209

queueCancel Command (shortcut: qc) on page 209

queueDropoff Command (shortcut: qd) on page 215

queueMulti Command (shortcut: qm) on page 229

queuePickup Command (shortcut: qp) on page 233

queuePickupDropoff Command (shortcut: qpd) on page 236

queueQuery Command (shortcut: qq) on page 241

queueQuery Command (shortcut: qq) on page 241

queueShow Command (shortcut: qs) on page 247

queueShowCompleted Command (shortcut: qsc) on page 249

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 252

queueShowRobotLocal Command (shortcut: qsrl)

queueShowRobotLocal Command (shortcut: qsrl)
The queueShowRobotLocal command displays the status of the robot.

Syntax

queueshowrobotlocal [echo_string]

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The queueShowRobotLocal arguments are described in the table below.

Parameter Definition

[echo_string] Enter an optional string value that will be displayed at the end of the
command.

Details

ARCL displays the following:

QueueRobot: robot_name robot_status robot_substatus echostring

Examples

The following example shows the queueShowRobotLocal command used to display the status and sub-
status of the robot. It includes an optional message "echoit".

queueshowrobotlocal echoit
QueueRobot: “Robot1” UnAvailable EStopPressed echoit
EndQueueShowRobot

Related Commands
queueCancel Command
queueDropoff command
queuePickup command
queuePickupDropoff command
queueQuery Command
queueShow command
queueShowRobot Command

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 253

quit Command

quit Command
Closes the connection to the server.

Syntax

rangeDeviceList

Usage Considerations

This ARCL command is available on the robot and Enterprise Manager.

Parameters

This command does not have any parameters.

Responses

The command returns:

Closing connection

Details

The quit command closes the ARCL client-server connection. It only closes the connection; it does not
shut down the server. To do that, use the shutDownServer command. For details, see shutDownServer
Command.

Examples
quit

The command returns:

Closing connection

Related Commands

shutdown Command on page 275

shutDownServer Command

stop Command on page 278

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 254

rangeDeviceGetCumulative Command

rangeDeviceGetCumulative Command
Gets the cumulative readings of a range device.

Syntax

rangeDeviceGetCumulative <name>

Usage Considerations

This ARCL command is only available on the robot.

This parameter is case-sensitive.

The robot may not sense anything if operated in an open area, and then it would not provide cumulative
readings.

ARAM Settings

For custom sensors: This command requires the addition of the "-customSensor <name>" argument to
the Custom Arguments section of the Configuration > Debug tab in the MobilePlanner software. For
details, see the Adept Motivity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the device. This para-
meter is case-sensitive.

Responses

The command returns:

RangeDeviceGetCumulative: <name> <series of X and Y points>

Details

The rangeDeviceGetCumulative command returns persistent readings from the named ranging sensor.
This parameter is case-sensitive.

The X-Y coordinates are map points (in mm) for center of a polyDot or tip of a polyArrow, which display-
aligns toward the center of the robot.

Note that not all sensors provide cumulative readings. For example, custom sensors do not provide cumu-
lative readings. Lasers are the main sensors that provide cumulative readings that are useful. You can use
the rangeDeviceList command to identify the sensors that provide cumulative readings. If there is no

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 255

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

rangeDeviceGetCumulative Command

<rangeDeviceName>CumulativeDrawingData listed for a sensor, then that sensor doesn't provide cumu-
lative readings.

The robot may not sense anything if operated in an open area, and then it would not provide cumulative
readings.

Examples

The following command returns the cumulative readings for the device "sim_lms2xx_1":

rangedevicegetcumulative sim_lms2xx_1

The command returns:

RangeDeviceGetCumulative: sim_lms2xx_1 -15600 10684 -15016 10609 -14464 10603
-14712 10921 -14177 10706 -11343 10444 -14834 10722 -12696 10659
-12485 10621 -12056 10621 -11838 10643 -11630 10706 -10364 10667
-14471 10944 -10820 11366 -11315 10683 -13950 10689 -13739 10693
-13525 10692 -13309 10697 -12256 10622 -12898 10701 -13103 10700
-15254 10706 -15048 10937 -15041 11165 -15162 11555

Related Commands

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 256

rangeDeviceGetCurrent Command

rangeDeviceGetCurrent Command
Gets the current readings of a range device.

Syntax

rangeDeviceGetCurrent<name>

Usage Considerations

This ARCL command is only available on the robot.

This parameter is case-sensitive.

ARAM Settings

For custom sensors: This command requires the addition of the "-customSensor <name>" argument to
the Custom Arguments section of the Configuration > Debug tab in the MobilePlanner software. For
details, see the Adept Motivity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that represents the name for the device. This para-
meter is case-sensitive.

Responses

The command returns:

RangeDeviceGetCurrent: <name> <series of X and Y points>

Details

The rangeDeviceGetCurrent command returns only active (current) detection readings from the named
ranging sensor. This parameter is case-sensitive.

To get the cumulative readings from a range device, use the rangeDeviceGetCumulative command. For
details, see rangeDeviceGetCumulative Command on page 255.

The X-Y coordinates are map points (in mm) for the center of a polyDot or tip of the polyArrow, which dis-
play-aligns toward the center of the robot.

Examples

The following command returns the current reading for the device "ARCL_CustomSensor":

rangedevicegetcurrent ARCL_CustomSensor

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 257

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

rangeDeviceGetCurrent Command

The command returns:

RangeDeviceGetCurrent: ARCL_CustomSensor -2004 6921

Related Commands

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 258

rangeDeviceList Command

rangeDeviceList Command
Returns the list of range (sensor) devices.

Syntax

rangeDeviceList

Usage Considerations

This ARCL command is only available on the robot.

ARAM Settings

For custom sensors: This command requires the addition of the "-customSensor <name>" argument to
the Custom Arguments section of the Configuration > Debug tab in the MobilePlanner software. For
details, see the Adept Motivity Software User's Guide.

Parameters

This command does not have any parameters.

Responses

The command returns:

RangeDevice: <name> <type>
RangeDevice: <name> <icon> <RGB primary> <RGB secondary> <size mm> <layer> <defaultOn or
defaultOff>
RangeDeviceCumulativeDrawingData:” <name> <icon> <RGB primary> <RGB secondary> <size mm>
<layer> <defaultOn or defaultOff>
...
EndOfRangeDeviceList

Details

The rangeDeviceList command returns a list of the range (sensor) devices available in the current map. It
also provides details about each device on the list. For details on the information returned, see the
Responses section.

Examples
rangeDeviceList

The command returns:

RangeDevice: switchableForbidden LOCATION_DEPENDENT
RangeDeviceCurrentDrawingData: switchableForbidden polyDots 0xf9bd30 0x000000 35 73
DefaultOff
RangeDeviceCumulativeDrawingData: switchableForbidden polyDots 0x8b6305 0x0 50 60
DefaultOff

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 259

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

rangeDeviceList Command

RangeDevice: Single_Robot_Sector LOCATION_DEPENDENT
RangeDeviceCurrentDrawingData: Single_Robot_Sector polyDots 0xd00000 0x000000 33 74
DefaultOff
RangeDevice: multiRobotCentral LOCATION_DEPENDENT
RangeDeviceCurrentDrawingData: multiRobotCentral polyDots 0x7d7d00 0x000000 100 72
DefaultOff
RangeDeviceCumulativeDrawingData: multiRobotCentral polyDots 0x7d007d 0x0 100 72
DefaultOff
RangeDevice: ARCL_GlobalCustomSensor NONE
RangeDeviceCurrentDrawingData: ARCL_GlobalCustomSensor polyDots 0xc5996c 0x000000 40 78
DefaultOn
RangeDevice: ARCL_CustomSensor NONE
RangeDeviceCurrentDrawingData: ARCL_CustomSensor polyDots 0xe9d324 0x000000 40 78
DefaultOn
RangeDevice: forbidden LOCATION_DEPENDENT
RangeDevice: irs NONE
RangeDeviceCurrentDrawingData: irs polyArrows 0xffff00 0x000000 120 80 DefaultOn
RangeDevice: bumpers NONE
RangeDeviceCurrentDrawingData: bumpers polyDots 0x000000 0x000000 120 83 DefaultOn
RangeDevice: sonar NONE
RangeDeviceCurrentDrawingData: sonar polyArrows 0x33ccff 0x000000 200 70 DefaultOn
RangeDevice: sim_lms2xx_1 LASER
RangeDeviceCurrentDrawingData: sim_lms2xx_1 polyDots 0x0000ff 0x000000 80 75 DefaultOn
RangeDeviceCumulativeDrawingData: sim_lms2xx_1 polyDots 0x7f 0x0 110 60 DefaultOn
EndOfRangeDeviceList

Related Commands

customReadingAdd Command on page 96

customReadingAddAbsolute Command on page 94

customReadingsClear Command on page 98

rangeDeviceGetCumulative Command on page 255

rangeDeviceGetCurrent Command on page 257

rangeDeviceList Command on page 259

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 260

say Command

say Command
Speak a text string through the robot audio output.

Syntax

say <text_string>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

string Enter the text string that you want the mobile robot to say. Quotes
are optional.

Responses

The command returns:

Saying <text_string>

Details

Allows you to have the mobile robot speak and then wait until it is finished before continuing on the route.

The say command is equivalent to the sayInstant task, which generates text-to-speech to the robot’s
audio output, if enabled.

To have the robot play a sound (.wav) file, use the play command. For details, see play Command on page
199.

Examples

The following example commands the robot to say "hello":

say "hello"
Saying "hello"

Related Commands

play Command on page 199

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 261

scanAddGoal Command

scanAddGoal Command
Adds a goal while the robot is scanning.

Syntax

scanAddGoal<name> [description]

Usage Considerations

This ARCL command is only available on the robot.

The command can only be usedwhile a scan is running.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that will represent the name for the goal.

description Enter an optional description for the goal.

Responses

The command returns the new goal information:

mapAddGoal: Added goal with name <name> 'label'

Details

The scanAddGoal command adds a goal to the mapwhile the robot is scanning. The goal is placed at the
robot's current pose and includes the goal name and description. It is similar to using the goal button on
the joystick, while scanning.

Examples

For example:

scanaddgoal goal_lc "This is Bob's goal"

The command returns:

mapAddGoal: Added goal with name 'goal_lc' and description 'This is Bob's goal'

Related Commands

scanAddInfo Command on page 264

scanAddTag Command on page 267

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 262

scanAddGoal Command

scanStart Command on page 269

scanStop Command on page 271

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 263

scanAddInfo Command

scanAddInfo Command
Adds an information line while the robot is scanning.

Syntax

scanaddinfo<LogInfo:type> <Name=string> <Label=string> <Desc=string> [Size =integer]
[IsData=integer] [Vis=mode] [FtSize=size] [Colorn=value] [Shape=shape]

Usage Considerations

This ARCL command is only available on the robot.

All parameter labels must be included, for example: LogInfo:GoalType Name=Newgoal Label="New Goal"
Desc="This is a goal", etc.

The command can only be usedwhile a scan is running.

All of fields and type names in the map file are case sensitive; if the case is wrong they are ignored.
Unknown fields are ignored.

The objects are informational-only (they do not contain any position), versus those added by the scanAd-
dTag command, which are position-corrected. For details, see scanAddTag Command on page 267.

ARAM Settings

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 264

scanAddInfo Command

Parameter Definition

LogInfo:type Required. This defines the type of information you want to add. Valid type
entries are:

l GoalType
l LocationType
l SectorType

GoalType markers are goals that can be driven to and appear in the map. Loca-
tionType and SectorType markers also appear in the map, but cannot be
driven to. GoalType markers must have a unique name, LocationType and
SectorType do not.

Name=string Required. Enter a text string that represents the name of the type that is
being defined.

Label=string Required. Enter a text string that represents the label that is displayed for the
type in popupmenus, etc.

Desc=string Required. Enter a text string that represents the description of the type that
is displayed in tool tips, etc.

Size=integer Enter an integer that represents the width/height (square) in mm of the
marker’s display icon in the map.

IsData=integer Optional. Enter a 1 or 0. The default value is 0.
Set IsData to 1 to have the relatedmarkers carried over with an ‘insert map’.

Vis=mode The default setting is DefaultOn. Validmodes are:

l AlwaysOn
l AlwaysOff
l DefaultOn
l DefaultOff

Currently supported for IsData=1 markers only, specifies marker visibility. Go
to the Map:Data menu in MobileEyes or MobilePlanner to change their vis-
ibility in the map display.

FtSize=size Optional. Enter an integer that represents the point size for the marker’s label
and description font. If the font is scaled, then express the point size in mm
and it must be amultiple of 100. If the font is fixed, express the point size in
pixels.

Colorn=value Optional. For n, enter an integer from 0 - 2.

For value, enter a color value which defines the marker’s map-display icon col-
ors. The color value is a six digit hexadecimal number (hence, the ‘0x’ prefix).
The first two digits give the red component, followed by two digits for green
and two digits for blue. For example:

l 0xFF0000 is bright red
l 0x888888 is medium gray

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 265

scanAddInfo Command

Parameter Definition

Shape=shape Optional. Shape of the marker’s map-display icon. The default setting is Plain.
Valid shapes are:

l Plain: The default shape, typically a filled square
l Cross: A cross shape
l Triangle: A triangle shape
l Hbars: A square shape containing horizontal bars or stripes
l Vbars: A square shape containing vertical bars or stripes
l T: A "T" shape
l U: A "U" shape

Responses

The command returns the new object information:

mapAddInfo: Added info 'LogInfo:type Name=string Label=string Desc=string Colorn=value
IsData=integer Vis=mode FtSize=size Shape=shape'

Details

Adds an information line (a description, typically defining a custom object) to the beginning of the map for
later reference.

This command only describes the object, it does not actually add any objects. That is done with the add
ScanTag command. For details, see scanAddTag Command on page 267.

This command can only be used after a scan is started with the scanStart command. For details on starting
a scan, see scanStart Command on page 269.

Examples

The following example adds a description of a custom LocationType object named "SensorReading":

scanAddInfo LogInfo:LocationType Name=SensorReading Label=”Sensor reading” Desc=”A
 sensor reading” Color=0x5500EE IsData=1 Vis=DefaultOn Shape=Cross

The command returns:

mapAddInfo: Added info 'LogInfo:LocationType Name=SensorReading Label= A sensor reading.
 Desc=.Blobs of paint. Color=0x5500EE IsData=1 Vis=DefaultOn Shape=Cross'

Related Commands

scanAddGoal Command on page 262

scanAddTag Command on page 267

scanStart Command on page 269

scanStop Command on page 271

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 266

scanAddTag Command

scanAddTag Command
Adds a tag as a cairn (marker) while the robot is scanning.

Syntax

scanAddTag cairn:<name> [label] [icon_type] [description]

Usage Considerations

This ARCL command is only available on the robot.

The command can only be usedwhile a scan is running.

The objects are position-corrected, versus those added by the scanAddInfo command, which contain no pos-
ition information. For details, see scanAddInfo Command on page 264.

ARAM Settings

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter the name of the object, from the Name= parameter, created
with the scanAddInfo command.

label Enter an optional string that provides the icon label.

icon_type Enter an optional string that provides the icon type.

description Enter an optional string that provides a description of the marker.

Responses

The command returns the new object information:

mapAddTag 'cairn: <name>[WithHeading] "label" ICON "

Details

The scanAddTag command adds amarker in the map of type <name>, as described by a scanAddInfo of
the same name. Objects are added to the scan as "cairns" (markers). The objects are position-corrected,
versus those added by the scanAddInfo command, which contain no position information.

Add “WithHeading” as suffix to the name in order to include a heading in the marker’s properties. For
details, see the Examples section.

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 267

scanAddTag Command

This command only adds a marker for the object, it does not create or describe the object. That is done
with the add scanAddInfo command. For details, see scanAddInfo Command on page 264.

This command can only be used after a scan is started with the scanStart command. For details on starting
a scan, see scanStart Command on page 269.

Examples

For example, suppose you used scanAddInfo to create an object description named "SensorReading", you
can use it with the scanAddTag command, as follows:

To add objects of that type with a heading:

scanaddtag cairn: SensorReadingWithHeading "id1" ICON ""

andwith and icon description:

scanaddtag cairn: RoomGoalWithHeading "Room 32920" ICON "Bob's office"

To add objects of that type without a heading:

scanaddtag cairn: SensorReading "id2" ICON ""

andwith an icon description:

scanaddtag cairn: RoomGoal "Room 223203" ICON "Fred's office"

Related Commands

scanAddGoal Command on page 262

scanAddInfo Command on page 264

scanStart Command on page 269

scanStop Command on page 271

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 268

scanStart Command

scanStart Command
Starts scanningmode with given 2d file name.

Syntax

scanStart<name>

Usage Considerations

This ARCL command is only available on the robot.

Only one scan can be running.

Parameters

The command parameters are described in the following table.

Parameters Definition

name Enter a string that will represent the name for the scan.

Responses

The command returns information:

Starting scan '<name>'
Scanning: Started scan '<name>'

Details

The scanStart command initiates scanningmode with the specified 2d file name. Only one scan can be act-
ive at a time. To stop the scan, use the scanStop command. For details, see scanStop Command on page
271.

Examples

To start a scan named "testscan", enter:

scanstart testscan

The command returns:

Starting scan 'testscan'
Scanning: Started scan 'testscan'

Related Commands

scanAddGoal Command on page 262

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 269

scanStart Command

scanAddInfo Command on page 264

scanAddTag Command on page 267

scanStop Command on page 271

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 270

scanStop Command

scanStop Command
Stops the started scan.

Syntax

scanStop

Usage Considerations

This ARCL command is only available on the robot.

The command can only be usedwhile a scan is running.

Parameters

This command does not have any parameters.

Responses

The command returns information about the new piece of information in the following format:

Stopped scan '<name>'
Scanning: Stopped scan '<name>'

Examples

To stop the scan that's currently running, enter:

scanstop

The command returns:

Stopping scan 'testscan'
Scanning: Stopped scan 'testscan'

Related Commands

scanAddGoal Command on page 262

scanAddInfo Command on page 264

scanAddTag Command on page 267

scanStart Command on page 269

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 271

setPayload Command

setPayload Command
Sets the payload name.

Syntax

setPayload<payload>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

payload Enter a name for the payload; quotes are optional.

Responses

The command returns:

payload <payload>

Details

The setPayload command sets the name of the robot payload. The name can be more than one word;
quotes are optional when entering the string. To view the payload name, use the getPayload command.
For details, see getPayload Command on page 132.

If the robot has multiple slots (containers) with different payloads in each slot, use the payloadSet com-
mand to set the payload name for each slot. For details, see payloadSet Command (shortcut: ps) on page
194.

Examples

The following example sets the payload name as "This has widgets":

setpayload This has widgets

The command returns:

payload This has widgets

Related Commands

getPayload Command on page 132

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 272

setPayload Command

payloadQuery Command (shortcut: pq) on page 187

payloadQuery Command (shortcut: pq) on page 187

payloadRemove Command (shortcut: pr) on page 192

payloadSet Command (shortcut: ps) on page 194

payloadSlotCount Command (shortcut: psc) on page 196

payloadSlotCountLocal Command (shortcut: pscl) on page 198

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 273

setPrecedence Command

setPrecedence Command
Sets precedence for this robot in a multi-robot encounter. Lower values take higher precedence.

Syntax

setPrecedence <integer>

Usage Considerations

This ARCL command is only available on the robot.

Parameters

The command parameters are described in the following table.

Parameter Definition

integer Enter an integer value that determines the precedence of the robot
in the event of a multi-robot encounter. The range is -100 to 100.

Responses

The command returns:

setPrecedence: <integer>

Details

The setPrecedence command is used to set the precedence information for the robot. The precedence
value is used in a multi-robot encounter. The robot that has the lowest value will get highest precedence,
the robot with the next lowest value will get the next highest precedence, and so on. The precedence
value is viewed using the getPrecedence command. For details, see getPrecedence Command on page
133.

Examples

The following example sets the robot precedence to 20:

setprecedence 20
setPrecedence: 20

Related Commands

getPrecedence Command on page 133

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 274

shutdown Command

shutdown Command
Shuts down the robot.

Syntax

shutDownServer

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

There is no response returned from this command.

Details

The shutdown command tells the robot to initiate its power-down sequence. The commandworks only
with Adept mobile robots that have power-down hardware.

Examples

To shut down the robot, enter:

shutdown

There is no response returned from this command.

Related Commands

quit Command on page 254

shutDownServer Command

stop Command on page 278

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 275

status Command

status Command
Returns the operational state of the robot.

Syntax

status

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

Status: <status>
BatteryVoltage: <volts_dc>
Location: <X> <Y> <Theta>
LocalizationScore: <score>
Temperature: <degrees>

Details

The status command returns the operational state of the robot, such as docking or going to a goal, battery
charge, position and localization score. To get a one-line status of the robot, use the oneLineStatus com-
mand. For details, see oneLineStatus Command on page 169.

Examples

To get the current status of the robot, enter the following:

status

The command returns:

Status: DockingState: Docking ForcedState: Unforced ChargeState: Not
BatteryVoltage: 26.1
Location: -969 301 1
LocalizationScore: 0.988304
Temperature: -128

Related Commands

getDateTime Command on page 123

getGoals Command on page 124

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 276

status Command

getInfo Command on page 126

getInfoList Command on page 128

getPayload Command on page 132

getRoutes Command on page 134

oneLineStatus Command on page 169

queryDockStatus Command on page 203

queryMotors Command on page 207

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 277

stop Command

stop Command
Stops the current robot motion.

Syntax

stop

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

<status_message>
Stopping
Stopped

Examples

To stop the robot while it is moving to goal "g_25", enter the following:

stop

The command returns:

Interrupted: Going to g_25
Stopping
Stopped

Related Commands

quit Command on page 254

shutdown Command on page 275

shutDownServer Command

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 278

trackSectors Command

trackSectors Command
Returns all sectors at the robot's current position.

Syntax

trackSectors

Usage Considerations

This ARCL command is only available on the robot.

ARAM Settings

This command requires the addition of the "-trackSector <name>" argument to the Custom Arguments
section of the Configuration > Debug tab in the MobilePlanner software. For details, see the Adept Motiv-
ity Software User's Guide.

Parameters

This command does not have any parameters.

Responses

The command returns:

TrackSectors: <type> [sector_name]
...
End of TrackSectors

Details

The trackSectors command lists all sectors at the robot's current position. If the robot is not on a sector, no
information is returned. If a sector has no name, then only its type will be displayed.

Before using this command, you must first create sector types for the map file, which can be added and
manipulated in MobilePlanner and visible in MobileEyes. To do this, you can download the map file, open it
with a text editor (like Notepad) and add your own SectorType to the map file:

MapInfo: SectorType Name=SomeSector "Label=SomeLabel" "Desc=Some description" Shape=Plain
Color0=0x0088ff

For example, you might enter something like:

MapInfo: SectorType Name=VerySlowSector "Label=VerySlow" "Desc=Area in which the robot
drives very slowly" Shape=Plain Color0=0xffffb0

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 279

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

trackSectors Command

The entry must be on one line—it is easiest is just to copy/paste an existing sector and then change its
parameters. There can be as many sector types as needed for your application. If you've given ARAM track
sector arguments, it will make the tracking commands available over ARCL.

You can edit the sector properties from MobilePlanner by right-clicking on it and selecting Edit. The "Edit
Advanced Area dialog opens, as shown in the following figure. You can add a name, description, select the
type, and adjust the size and position.

Sector Properties

There are other "sector" commands, such as: 'trackSectorsAtGoal <goal>', which provides the sectors at a
goal; 'trackSectorsAtPoint <X> <Y>', which provides the sectors at a point; and 'trackSectorsPath
<optional:dist>', which provides the sectors for that distance along the path (or the whole path if no dis-
tance is given). Note that all of these commands have identical output, which is shown in the Responses
section.

For details on the related commands, see the Related Commands section.

Examples

The following example lists the sectors at the robot's current position:

tracksectors
TrackSectors: SlowSector
End of TrackSectors

The following example shows the sector name after the sector in the previous example is named
"SlowSectorTest" in MobilePlanner:

tracksectors
TrackSectors: SlowSector SlowSectorTest
End of TrackSectors

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 280

trackSectors Command

Related Commands

trackSectors Command on page 279

trackSectorsAtGoal Command on page 282

trackSectorsAtPoint Command on page 285

trackSectorsPath Command on page 288

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 281

trackSectorsAtGoal Command

trackSectorsAtGoal Command
List all sectors pertaining to a goal.

Syntax

trackSectorsAtGoal<goal>

Usage Considerations

This ARCL command is only available on the robot.

ARAM Settings

This command requires the addition of the "-trackSector <name>" argument to the Custom Arguments
section of the Configuration > Debug tab in the MobilePlanner software. For details, see the Adept Motiv-
ity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

goal Enter a string that represents the name for the goal.

Responses

The command returns:

TrackSectors: <type> [sector_name]
...
End of TrackSectors

Details

The trackSectors command lists all sectors at the named goal. If the named goal is not on a sector, no
information is returned. If a sector has no name, then only its type will be displayed.

Before using this command, you must first create sector types for the map file, which can be added and
manipulated in MobilePlanner and visible in MobileEyes. To do this, you can download the map file, open it
with a text editor (like Notepad) and add your own SectorType to the map file:

MapInfo: SectorType Name=SomeSector "Label=SomeLabel" "Desc=Some description" Shape-
e=Plain Color0=0x0088ff

For example, you might enter something like:

MapInfo: SectorType Name=VerySlowSector "Label=VerySlow" "Desc=Area in which the robot
drives very slowly" Shape=Plain Color0=0xffffb0

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 282

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

trackSectorsAtGoal Command

The entry must be on one line—it is easiest is just to copy/paste an existing sector and then change its para-
meters. There can be as many sector types as needed for your application. If you've given ARAM track sec-
tor arguments, it will make the tracking commands available over ARCL.

You can edit the sector properties from MobilePlanner by right-clicking on it and selecting Edit. The "Edit
Advanced Area dialog opens, as shown in the following figure. You can add a name, description, select the
type, and adjust the size and position.

Sector Properties

There are other "sector" commands, such as: 'trackSectors', which provides the sectors at the robot's cur-
rent position; 'trackSectorsAtPoint <X> <Y>', which provides the sectors at a point; and 'trackSectorsPath
<optional:dist>', which provides the sectors for that distance along the path (or the whole path if no dis-
tance is given). Note that all of these commands have identical output, which is shown in the Responses
section.

For details on the related commands, see the Related Commands section.

Examples

The following example lists the sectors at the named goal:

tracksectorsatgoal g_10
TrackSectors: SlowSector
End of TrackSectors

The following example shows the sector name after the sector in the previous example is named "SlowSect-
orTest" in MobilePlanner:

tracksectorsatgoal g_10
TrackSectors: SlowSector SlowSectorTest
End of TrackSectors

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 283

trackSectorsAtGoal Command

Related Commands

trackSectors Command on page 279

trackSectorsAtPoint Command on page 285

trackSectorsPath Command on page 288

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 284

trackSectorsAtPoint Command

trackSectorsAtPoint Command
List all sectors pertaining to a point on the map.

Syntax

trackSectorsAtPoint<X> <Y>

Usage Considerations

This ARCL command is only available on the robot.

ARAM Settings

This command requires the addition of the "-trackSector <name>" argument to the Custom Arguments
section of the Configuration > Debug tab in the MobilePlanner software. For details, see the Adept Motiv-
ity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

X Enter the X coordinate for the point.

Y Enter the Y coordinate for the point.

Responses

The command returns:

TrackSectors: <type> [sector_name]
...
End of TrackSectors

Details

The trackSectorsAtPoint command lists all sectors at the specified X-Y coordinates on the map. If the spe-
cified point is not on a sector, no information is returned. If a sector has no name, then only its type will be
displayed.

Before using this command, you must first create sector types for the map file, which can be added and
manipulated in MobilePlanner and visible in MobileEyes. To do this, you can download the map file, open it
with a text editor (like Notepad) and add your own SectorType to the map file:

MapInfo: SectorType Name=SomeSector "Label=SomeLabel" "Desc=Some description" Shape=Plain
Color0=0x0088ff

For example, you might enter something like:

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 285

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

trackSectorsAtPoint Command

MapInfo: SectorType Name=VerySlowSector "Label=VerySlow" "Desc=Area in which the robot
drives very slowly" Shape=Plain Color0=0xffffb0

The entry must be on one line—it is easiest is just to copy/paste an existing sector and then change its
parameters. There can be as many sector types as needed for your application. If you've given ARAM track
sector arguments, it will make the tracking commands available over ARCL.

You can edit the sector properties from MobilePlanner by right-clicking on it and selecting Edit. The "Edit
Advanced Area dialog opens, as shown in the following figure. You can add a name, description, select the
type, and adjust the size and position.

Sector Properties

There are other "sector" commands, such as: 'trackSectors', which provides the sectors at the robot's cur-
rent position; 'trackSectorsAtGoal <goal>', which provides the sectors at a point; and 'trackSectorsPath
<optional:dist>', which provides the sectors for that distance along the path (or the whole path if no dis-
tance is given). Note that all of these commands have identical output, which is shown in the Responses
section.

For details on the related commands, see the Related Commands section.

Examples

The following example lists the sectors at the specified coordinates:

tracksectorsatpoint 16615 -6497
TrackSectors: SlowSector
End of TrackSectors

The following example shows the sector name after the sector in the previous example is named
"SlowSectorTest" in MobilePlanner:

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 286

trackSectorsAtPoint Command

tracksectorsatpoint 16615 -6497
TrackSectors: SlowSector SlowSectorTest
End of TrackSectors

Related Commands

trackSectors Command on page 279

trackSectorsAtGoal Command on page 282

trackSectorsPath Command on page 288

Adept ARCL Reference Guide, Updated: 9:26:56 AM

Page 287

trackSectorsPath Command

trackSectorsPath Command
Lists the tracked sectors the path (or part of it) is in. An optional distance can be specified.

Syntax

trackSectorsPath [distance]

Usage Considerations

This ARCL command is only available on the robot.

The robot must be traveling on a path when this command is issued; otherwise, no results will be
returned.

ARAM Settings

This command requires the addition of the "-trackSector <name>" argument to the Custom Arguments
section of the Configuration > Debug tab in the MobilePlanner software. For details, see the Adept Motiv-
ity Software User's Guide.

Parameters

The command parameters are described in the following table.

Parameters Definition

distance Enter an optional distance (in mm) from the front of the robot. Sect-
ors will be listed that are on the path between the robot and that
end point.

Responses

The command returns:

TrackSectors: <type> [sector_name]
...
End of TrackSectors

Details

The trackSectorsPath command lists all sectors in the path of the robot and, optionally, over a specified dis-
tance on its path. If the path (or part of it) is not on a sector, no information is returned. If a sector has no
name, then only its type will be displayed.

Before using this command, you must first create sector types for the map file, which can be added and
manipulated in MobilePlanner and visible in MobileEyes. To do this, you can download the map file, open it
with a text editor (like Notepad) and add your own SectorType to the map file:

MapInfo: SectorType Name=SomeSector "Label=SomeLabel" "Desc=Some description" Shape-
e=Plain Color0=0x0088ff

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 288

http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html
http://www.adept.com/main/KE/DATA/Mobile/Motivity_UG/motivity_ug_TOC.html

trackSectorsPath Command

For example, you might enter something like:

MapInfo: SectorType Name=VerySlowSector "Label=VerySlow" "Desc=Area in which the robot
drives very slowly" Shape=Plain Color0=0xffffb0

The entry must be on one line—it is easiest is just to copy/paste an existing sector and then change its para-
meters. There can be as many sector types as needed for your application. If you've given ARAM track sec-
tor arguments, it will make the tracking commands available over ARCL.

You can edit the sector properties from MobilePlanner by right-clicking on it and selecting Edit. The "Edit
Advanced Area dialog opens, as shown in the following figure. You can add a name, description, select the
type, and adjust the size and position.

Sector Properties

There are other "sector" commands, such as: 'trackSectors', which provides the sectors at the robot's cur-
rent position; 'trackSectorsAtGoal <goal>', which provides the sectors at a point; and 'trackSectorsAtPoint
<X> <Y>', which provides the sectors for that point on the map. Note that all of these commands have
identical output, which is shown in the Responses section.

For details on the related commands, see the Related Commands section.

Examples

The following example sends the robot to goal "g_10" and then lists the sectors that are in the path to that
goal.

goto g_10
Going to g_10

tracksectorspath

Adept ARCL Reference Guide, Updated: 9:26:57 AM

Page 289

trackSectorsPath Command

Sectors over path
TrackSectors: SlowSector SlowSectorTest
End of TrackSectors

Arrived at g_10

The following example sends the robot to goal "g_10" and then lists the sectors that are within 500 mm in
front of the robot on the path to that goal.

goto g_10
Going to g_10

tracksectorspath 500
Sectors over path for length 500
TrackSectors: SlowSector SlowSectorTest
End of TrackSectors

Arrived at g_10

Related Commands

trackSectors Command on page 279

trackSectorsAtGoal Command on page 282

trackSectorsAtPoint Command on page 285

trackSectorsPath Command on page 288

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 290

undock Command

undock Command
Undocks the robot.

Syntax

undock

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

DockingState: <dock_state> ForcedState: <forced_state> ChargeState: <charge_state>
Stopping
Stopped

Details

The undock command tells the robot to move off of the dock/recharge station. It positions the robot in front
of and facing the dock/recharge station.

When the robot is fully-charged, it will automatically undock from the dock/recharge station.

You can also undock the robot with one of the "goto..." commands. For details on these commands, use
the links in the Related Commands section.

Examples

The following example undocks the robot:

undock

The command returns:

DockingState: Undocked ForcedState: Unforced ChargeState: Unknowable
Stopping
Stopped

Related Commands

goto Command on page 135

gotoPoint Command on page 137

gotoRouteGoal Command on page 139

Adept ARCL Reference Guide, Updated: 9:26:57 AM

Page 291

undock Command

dock Command on page 104

undock Command on page 291

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 292

updateInfo Command

updateInfo Command
Updates the value for and existing piece of information.

Syntax

updateInfo<infoName> <infoValue>

Usage Considerations

This ARCL command is only available on the robot.

You can only update information that was created with the createInfo command. For details, see cre-
ateInfo Command on page 92.

Parameters

The command parameters are described in the following table.

Parameters Definition

infoName Enter the name for the information that you wish to update.

infoValue Enter a string that represents the new information value.

Responses

The command returns:

Updated info for <infoName>

Details

This command is used to update the value of a piece of information that resides on the connected device.
The information is initially created using the createInfo command. For details, see createInfo Command on
page 92.

The updated information can be viewed using the getInfo command. For details, see getInfo Command on
page 126 .

All information on the connected device can be listed with the getInfoList command. For details, see getIn-
foList Command on page 128.

Examples

To update the information called "myString" from an initial value of "testing" to a new value of "newtest",
enter the following:

updateinfo myString newtest

The command returns:

Adept ARCL Reference Guide, Updated: 9:26:57 AM

Page 293

updateInfo Command

Updated info for myString

Related Commands

createInfo Command on page 92

getInfo Command on page 126

getInfoList Command on page 128

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 294

waitTaskCancel Command

waitTaskCancel Command
Cancels a wait task if one is active.

Syntax

waitTaskCancel

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

WaitState: <status>

The pauseTaskCancel command returns one of the followingmessages:

l WaitState:Waiting with status "Waiting"
l WaitState:Waiting interrupted
l WaitState:Waiting cancelled
l WaitState: Not waiting

These messages are broadcast to all of the clients, with the exception of "Not waiting".

Examples

The following example starts, builds and executes a task list that contains a "wait 10" task (3rd task) on
the list. The waitTaskCancel command is used to cancel the wait task.

liststart mylist
List being cleared
Making new list

listadd goto g_5
Added task 'goto g_5' to the list
listadd goto g_6
Added task 'goto g_6' to the list
listadd wait 10
Added task 'wait 10' to the list
listadd goto g_23
Added task 'goto g_23' to the list

listexecute
Executing list

WaitState: Waiting 10 seconds with status "Waiting"

Adept ARCL Reference Guide, Updated: 9:26:57 AM

Page 295

waitTaskCancel Command

waittaskcancel
WaitState: Waiting completed

Successfully finished task list

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 296

waitTaskState Command

waitTaskState Command
Displays the status of the wait task.

Syntax

waitTaskState

Usage Considerations

This ARCL command is only available on the robot.

Parameters

This command does not have any parameters.

Responses

The command returns:

WaitState: <status>

The waitTaskState command returns one of the followingmessages:

l WaitState:Waiting with status "Pausing"
l WaitState:Waiting interrupted
l WaitState:Waiting cancelled
l WaitState: Not waiting

These messages are not broadcast to all of the clients, with the exception of "Not waiting". This command
is helpful for finding out what the current state of the robot is when connecting to ARCL.

Examples

The following example shows the status of the wait task.

waittaskstate
WaitState: Waiting with status "Waiting"

Related Commands

doTask Command on page 105

doTaskInstant Command on page 107

executeMacro Command on page 112

getMacros Command on page 130

listAdd Command on page 145

listExecute Command on page 147

Adept ARCL Reference Guide, Updated: 9:26:57 AM

Page 297

waitTaskState Command

listStart Command on page 149

pauseTaskCancel Command on page 183

pauseTaskState Command on page 185

waitTaskCancel Command on page 295

waitTaskState Command on page 297

Adept ARCL Reference Guide, Updated: 2/19/2016

Page 298

ARCL Server Messages
The following table describes the server messages sent from ARCL to connected clients.

Server Message Definition

Map changed The map, with all of its related features, was just updated on the
mobile robot.

Configuration changed One or more ARAM configuration parameters was just updated on the
mobile robot.

TextRequestChargeVoltage This message is displayedwhen the battery voltage is below the
LowBatteryVoltage threshold. When this occurs, the server message
is displayed once per minute.

Estop pressed The mobile robot motors were disabled.

Estop relieved The mobile robot motors were enabled.

Motors disabled The mobile robot motors were disabled, other than through an Estop.
For example, using the LCD-interactive option.

Error: <error> This message is displayed if an error occurs while a command is execut-
ing. For example:

l Emergency stop pressed
l Cannot find path
l Failed going to goal
l Stalled
l Robot lost
l Lost connection to robot
l Server crashed

Interrupted: <command> Commandsmay be interrupted. For example, if while going to goal2,
you send the stop command, ARCL sends: "Interrupted: Going to
goal2".

DockingState: Includes docking and charge state information; this happens
whenever there is a change to the docking state.

ARCL Server Messages

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 299

Robot Fault Messages
The followingmessages are broadcast to ARCL when robots set or clear faults.

Broadcast Message Definition

Robot Fault

Fault_Application An application-specific fault has occurred. A description of the fault
might be optionally provided by the application payload. The Enterprise
Manager will not assign jobs to the robot when faults are present.

Driving_Application_Fault An application-specific fault has occurred. A persistent popupwill be dis-
played to the user. The robot will be unable to drive while this fault is
asserted.

Critical OverTemperatureAnalog The robot is too hot (measured by analog) andwill shut down shortly.

Critical UnderVoltage The robot battery is critically low andwill shut down shortly.

EncoderDegraded The robot's encoders may be degraded.

Critical GyroFault The robot's gyro has had a critical fault. You may power-cycle the robot
and continue using it, but you should also contact your robot provider
for maintenance.

Robot Fault Cleared

EncoderDegraded The robot's encoders may be degraded.

Driving EncoderFailed The robot's encoders have failed, turn off the robot and contact your
robot provider for maintenance.

Critical GyroFault The robot's gyro has had a critical fault, you may power cycle the robot
and continue using it, but you should also contact your robot provider
for maintenance.

Critical OverTemperatureAnalog The robot is too hot (measured by analog) andwill shut down shortly.

Critical UnderVoltage The robot battery is critically low andwill shut down shortly.

Critical_Application_Fault An application-specific fault has occurred. A persistent popupwill be dis-
played to the user.

See Also...
Introduction to ARCL on page 25
Enable Options in
Set ARCL Parameters in MobilePlanner on page 30
Connect to ARCL Using a Telnet Client on page 42
Using the ARCL Commands on page 46
ARCL Command Reference on page 70

Robot Fault Messages

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 300

ARCL Server Messages on page 299

See Also...

Adept ARCL Reference Guide, Updated: 2/19/2016
Page 301

	Introduction to ARCL
	Version Requirements
	How Do I Begin
	Related Manuals
	How Can I Get Help?

	Set ARCL Parameters in MobilePlanner
	Accessing the Configuration Options
	Understanding the Configuration Parameters
	Outgoing ARCL Connection Setup Parameters
	Outgoing ARCL Commands Parameters
	Outgoing Enterprise ARCL Connection Setup Parameters
	Outgoing Enterprise ARCL Commands Parameters
	See Also...

	Connect to ARCL Using a Telnet Client
	Setting the Connection Parameters
	Connecting to ARCL
	See Also...

	Using the ARCL Commands
	See Also...
	Understanding the Commands
	Document Conventions
	Command Notes
	Data Types
	Status and Error Messages
	Status Conditions

	Using ARCL Variables
	Using Tasks and Macros
	Forever Tasks

	Using Configuration Commands
	Using the Queuing Commands
	Working With Payloads
	Creating a Map
	Tracking Sectors
	Navigating and Localizing
	Using Range Devices and Custom Sensors
	Monitoring the I/O Ports

	ARCL Command Reference
	See Also...
	analogInputList Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	analogInputQueryRaw Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Related Commands

	analogInputQueryVoltage Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Related Commands

	applicationFaultClear Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	applicationFaultQuery Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	applicationFaultSet Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	arclSendText Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Example

	clearAllObstacles Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples

	configAdd Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	configParse Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	configStart Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	connectOutgoing Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples

	createInfo Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	customReadingAddAbsolute Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	customReadingAdd Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	customReadingsClear Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	distanceBetween Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commandss

	distanceFromHere Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	dock Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	doTask Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	doTaskInstant Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Related Commands

	echo Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples

	enableMotors Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	etaRequest Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	executeMacro Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Example
	Related Commands

	faultsGet Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	follow Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getConfigSectionInfo Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getConfigSectionList Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Value
	Details
	Examples
	Related Commands

	getConfigSectionValues Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getDateTime Command
	Syntax
	Usage Considerations
	Parameters
	Examples

	getGoals Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	getInfo Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getInfoList Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getMacros Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getPayload Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getPrecedence Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	getRoutes Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	goto Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	gotoPoint Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	gotoRouteGoal Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	help Command
	Syntax
	Usage Considerations
	Parameters
	Details
	Examples

	inputList Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	inputQuery Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	listAdd Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	listExecute Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	listStart Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	localizeToPoint Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	log Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	mapObjectInfo Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	mapObjectList Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	mapObjectTypeInfo Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	mapObjectTypeList Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	newConfigParam Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	newConfigSectionComment Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	odometer Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	odometerReset Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	oneLineStatus Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	outputList Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	outputOff Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	outputOn Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	outputQuery Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	patrol Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	patrolOnce Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	patrolResume Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	pauseTaskCancel Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	pauseTaskState Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	payloadQuery Command (shortcut: pq)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	payloadQueryLocal Command (shortcut: pql)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	payloadRemove Command (shortcut: pr)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	payloadSet Command (shortcut: ps)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	payloadSlotCount Command (shortcut: psc)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	payloadSlotCountLocal Command (shortcut: pscl)
	Syntax
	Usage Considerations
	Parameters
	Examples
	Related Commands

	play Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	popupSimple Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queryDockStatus Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queryFaults Command (shortcut: qf)
	Syntax
	Usage Considerations
	Parameter
	Responses
	Details
	Example
	Related Commands

	queryMotors Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueCancel Command (shortcut: qc)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueCancelLocal Command (shortcut: qcl)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Example
	Related Commands

	queueDropoff Command (shortcut: qd)
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueModify Command (shortcut: qmod)
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueModifyLocal Command (shortcut: qmodl)
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueMulti Command (shortcut: qm)
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queuePickup Command (shortcut: qp)
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queuePickupDropoff Command (shortcut: qpd)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueQuery Command (shortcut: qq)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueQueryLocal Command (shortcut: qql)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueShow Command (shortcut: qs)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueShowCompleted Command (shortcut: qsc)
	Syntax
	Usage Considerations
	Parameters
	Returns
	Details
	Examples
	Related Commands

	queueShowRobot Command (shortcut: qsr)
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	queueShowRobotLocal Command (shortcut: qsrl)
	Syntax
	Usage Considerations
	Parameters
	Details
	Examples
	Related Commands

	quit Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	rangeDeviceGetCumulative Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	rangeDeviceGetCurrent Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	rangeDeviceList Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	say Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	scanAddGoal Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	scanAddInfo Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	scanAddTag Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	scanStart Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	scanStop Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	setPayload Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	setPrecedence Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	shutdown Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	status Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	stop Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	trackSectors Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	trackSectorsAtGoal Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	trackSectorsAtPoint Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	trackSectorsPath Command
	Syntax
	Usage Considerations
	ARAM Settings
	Parameters
	Responses
	Details
	Examples
	Related Commands

	undock Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	updateInfo Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Details
	Examples
	Related Commands

	waitTaskCancel Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	waitTaskState Command
	Syntax
	Usage Considerations
	Parameters
	Responses
	Examples
	Related Commands

	ARCL Server Messages
	Robot Fault Messages
	See Also...

