European NanOSH Conference – Nanotechnologies: 3–5 December 2007, Helsinki, Finland

A

Experimental evaluation of personal protective equipments against carbon nano aerosols > 10 nm

Fibrous filter, respirators, protective clothing and gloves

CEA-Grenoble Liten, France F. Tardif, L. Golanski, F. Rouillon, A. Guiot, S. Bernard

Work funded by EC 6th PCRD programs : Nanosafe2 project

Page 1

Without specific standards for nanoparticles, each industrial company and lab have their own practices to protect workers against nanoparticles

Are conventional protection equipments still efficient for particles < 100 nm?

✓ Test procedures

✓ Fibrous filter efficiency

✓ Respirator efficiency

✓ Protective clothing efficiency

✓ Glove efficiency

Secured installation for filter

 Challenge particles: polydispersed graphite nanoparticles generated by electrical plasma (Japuntich et al 2007 → polydispersed equivalent to mono)
Air flow: generated by depression in the media 1 to 110 L/min (identical to use conditions)
Measurements: Scanning Mobility Particle Sizer

> Concentration of graphite particles in upper cell maintained constant

> A 20 g/cm² differential pressure mimics a slight contact

- CNC measurement are performed in the down stream part of the cell for 2 particle size challenges: 30 and 60 nm.
- >Derivated from "Through-diffusion" method standards NF EN 374 and NF EN ISO 65229 e 5

✓ Test procedures

✓ Fibrous filter efficiency

✓ Respirator efficiency

✓ Protective clothing efficiency

✓ Glove efficiency

Validation of the method

 Good reproducibility on a H11 filter, accuracy limit around 10 nm (too low downstream concentration)

Verification: the higher the flow rate, the higher the penetration

Results obtained on filter media with C particles

Results from
different filter media
against C particles

Conclusion :

. As expected: better efficiency for particles < 150 nm (MPPS)

. No thermal bounce detected with graphite nanoparticle $> 10 \text{ nm}_{Page 8}$

Filtration theory in fibrous media

Thermal bounce or not thermal bounce

that is the question ...

Looking for Wang & Kasper (91) prediction without success :

Authors	Detection of thermal bounce	Size range of nanoparticles	Nanoparticle type
Ichitsubo and al. (1996)	No	2-7nm	Ag and NaCl particles
Alonso and al. (1997)	No	2-7nm	Ag and NaCl particles
Balazy and al., (2004)	Yes	At D = 20nm	DEHS liquid aerosol
Heim and al., (2005)	No	2.5-20nm	NaCI particles
Kim and al., (2007)	No	3-20nm	Ag particles
This work	No	> 10nm	Graphite particles

Finally, it is more and more accepted that thermal bounce is not an issue upper 2-3 nm at ordinary temperature (D. Pui et al. 2007).

✓ Test procedures

✓ Fibrous filter efficiency

✓ Respirator efficiency

✓ Protective clothing efficiency

✓ Glove efficiency

MASK CARTRIDGE EFFICIENCY

Filtration efficiency of respirator filters against carbon nanoparticles

***** For D < 20nm : penetration $\leq 0.1\%$

✓ Test procedures

✓ Fibrous filter efficiency

✓ Respirator efficiency

✓ Protective clothing efficiency

✓ Glove efficiency

Test efficiency of protective clothing measured like a filter

Measured at quite high velocity with NaCl challenge particles Measured at very low face velocity with carbon particles

S.H. Huang et al 2007: almost This work: same behavior same behavior as filters
High density polyethylene textile (Tyvek type) better than cotton and paper

est efficiency of protective clothing as measured by through diffusion method

Clothing efficiency: Particle flow per minute

Fabric efficiency: Diffusion coefficient

Material efficiency as measured by through diffusion

Conclusion: best results obtained with nonwoven fabrics Same trend for the 2 approaches: flow and through diffusion!

✓ Test procedures

✓ Fibrous filter efficiency

✓ Respirator efficiency

✓ Protective clothing efficiency

✓ Glove efficiency

Test efficiency of gloves as measured by through diffusion method

Glove efficiency: Material efficiency: Particle flow per minute Diffusion coefficient 5 10⁻¹¹ 3 10⁴ 100 µm Particle flow (part/min) 2,1 1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,1 2 2,2 10 4 30 nm 650 µm 80 nm 4 10⁻¹¹ Diffusion coefficient (m²/s) 30 nm 650 um 80 nm 700 µm 3 10⁻¹¹ 700 µm 2 10⁻¹¹ 150 µm 150 µm **1 10**⁻¹¹ 100 um 5000 150 µm 150 µm 0 Λ Nitrile Latex Latex Neopren Vinyl Nitrile Neopren Vinyl Latex Latex Kim. Clark Piercan Kim. Clark Mappa DAK Tech Kim. Clark Piercan Kim, Clark Mappa DAK Tech

 ✓ Best results obtained here with vinyl gloves
✓ Efficiency depending on material and thickness and process manufacturing (≠ latex)

General conclusion

Fibrous filter, respirator cartridges:

In accordance with the conventional filtration theory fibrous filters (paper, glass fibre, etc.) are more efficient for nanoparticles down to MPPS. Results with graphite particles are consistent with other particles described in the litterature DOP, Ag, NaCl : no thermal bounce is observed until 10 nm.

Protective clothing:

Important efficiency differences observed: better not to use cotton fabrics, nonwoven fabrics seems much more efficient (air tight materials) Tyvek type.

➤ Gloves:

80 nm nanoparticles diffuse through gloves materials! Best gloves tested are made with vinyl polymers.

na One of the 2008 rendez-vous

Nanosafe International conference Novembre 2008

or not thermal bounce that is the question ...

Wang and Kasper, 1991: Bounce effect would occur in the region of 10 nm and below due to non favorable balance between Brownian kinetic energy and vdW energy!

Depending on : size, fiber/particle affinity, particle deformation, temperature, etc.

n	Test efficiency of protective clothing as measured by through diffusion method								
\sim	SAI	E	Clothing	Material					
		Thickn	efficiency 30 nm	efficiency 30 nm	80 nm	80 nm			
11/1	A A A A A A A A A A A A A A A A A A A	ess (µm)	particle flow (Part/min)	Diffusion Coefficient (m²/s)	particle flow (Part/min)	Diffusion Coefficient (m²/s)			
	Cotton suit	650	9.6e+08	1.9e-6	1.3e+09	2.6e-6			
	Synthetic suit (best body)	320	1.9e+09	1,8e-6	2.9e+08	2.9e-7			
	Nonwoven fabric Tychem	210	1.2e+08	7.9e-8	1.2+08	7.9e-8			
	Nonwoven fabric Tyvek	115	2.5+08	9.1e-8	6.9e+07	2.5e-8			

Conclusion: best results obtained with nonwoven fabrics (worse: cotton) Same trend for the 2 approaches: flow and through diffusion!

Test efficiency of gloves as measured by through diffusion method

Test efficiency of gloves as measured by through diffusion method

Results @ 80 nm

Material	Thickness	Particle flow (part/min)	Diffusion coefficient (m²/s)
Nitrile Purple Kimberley Clark	100 µm	28 500	8.8e-12
Latex BAG Piercan	650 μm	21 000	4.2e-11
Latex PFE Kimberley Clark	150 µm	7 500	3.5e-12
Neopren 420 Mappa	700 µm	12 000	2.6e-11
Vinyl DAK Technical	150 µm	6 000	2.8e-12

✓ Best results obtained with vinyl gloves

 ✓ Efficiency depending on material and thickness and process manufacturing (≠ latex)